دورية أكاديمية

In silico design of a new Zn–triazole based metal–organic framework for CO2 and H2O adsorption.

التفاصيل البيبلوغرافية
العنوان: In silico design of a new Zn–triazole based metal–organic framework for CO2 and H2O adsorption.
المؤلفون: Dahmani, R., Grubišić, S., Djordjević, I., Ben Yaghlane, S., Boughdiri, S., Chambaud, G., Hochlaf, M.
المصدر: Journal of Chemical Physics; 1/14/2021, Vol. 154 Issue 2, p1-10, 10p
مصطلحات موضوعية: MONTE Carlo method, METAL-organic frameworks, CARBON dioxide adsorption, HYDROGEN bonding interactions, ADSORPTION isotherms, ADSORPTION (Chemistry), COMPUTER-assisted molecular design, LANGMUIR isotherms
مستخلص: In search for future good adsorbents for CO2 capture, a nitrogen-rich triazole-type Metal–Organic Framework (MOF) is proposed based on the rational design and theoretical molecular simulations. The structure of the proposed MOF, named Zinc Triazolate based Framework (ZTF), is obtained by replacing the amine-organic linker of MAF-66 by a triazole, and its structural parameters are deduced. We used grand-canonical Monte Carlo (GCMC) simulations based on generic classical force fields to correctly predict the adsorption isotherms of CO2 and H2O. For water adsorption in MAF-66 and ZTF, simulations revealed that the strong hydrogen bonding interactions of water with the N atoms of triazole rings of the frameworks are the main driving forces for the high adsorption uptake of water. We also show that the proposed ZTF porous material exhibits exceptional high CO2 uptake capacity at low pressure, better than MAF-66. Moreover, the nature of the interactions between CO2 and the MAF-66 and ZTF surface cavities was examined at the microscopic level. Computations show that the interactions occur at two different sites, consisting of Lewis acid–Lewis base interactions and hydrogen bonding, together with obvious electrostatic interactions. In addition, we investigated the influence of the presence of H2O molecules on the CO2 adsorption on the ZTF MOF. GCMC simulations reveal that the addition of H2O molecules leads to an enhancement of the CO2 adsorption at very low pressures but a reduction of this CO2 adsorption at higher pressures. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00219606
DOI:10.1063/5.0037594