دورية أكاديمية

Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli.

التفاصيل البيبلوغرافية
العنوان: Environmental complexity is more important than mutation in driving the evolution of latent novel traits in E. coli.
المؤلفون: Karve, Shraddha, Wagner, Andreas
المصدر: Nature Communications; 10/6/2022, Vol. 13 Issue 1, p1-12, 12p
مصطلحات موضوعية: NUCLEOTIDE sequencing, ANTIBIOTICS
مستخلص: Recent experiments show that adaptive Darwinian evolution in one environment can lead to the emergence of multiple new traits that provide no immediate benefit in this environment. Such latent non-adaptive traits, however, can become adaptive in future environments. We do not know whether mutation or environment-driven selection is more important for the emergence of such traits. To find out, we evolve multiple wild-type and mutator E. coli populations under two mutation rates in simple (single antibiotic) environments and in complex (multi-antibiotic) environments. We then assay the viability of evolved populations in dozens of new environments and show that all populations become viable in multiple new environments different from those they had evolved in. The number of these new environments increases with environmental complexity but not with the mutation rate. Genome sequencing demonstrates the reason: Different environments affect pleiotropic mutations differently. Our experiments show that the selection pressure provided by an environment can be more important for the evolution of novel traits than the mutational supply experienced by a wild-type and a mutator strain of E. coli. Novel traits without immediate fitness benefit evolve frequently but we don't know whether mutation or environment-driven selection drives this evolution. Here, using experimental evolution of E. coli populations, the authors demonstrate the importance of selection in the evolution of latent novel traits. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:20411723
DOI:10.1038/s41467-022-33634-w