دورية أكاديمية

Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells.

التفاصيل البيبلوغرافية
العنوان: Bypass Configurations of Membrane Humidifiers for Water Management in PEM Fuel Cells.
المؤلفون: Vu, Hoang Nghia, Trinh, Dinh Hoang, Truong Le Tri, Dat, Yu, Sangseok
المصدر: Energies (19961073); Oct2023, Vol. 16 Issue 19, p6986, 17p
مصطلحات موضوعية: WATER management, PROTON exchange membrane fuel cells, HUMIDIFIERS, HIGH performance computing, SUPPLY & demand, HUMIDITY
مستخلص: Water management is an important criterion in the operation of proton-exchange membrane fuel cells to maintain the high performance and reliability of the system. The water content in the cathode air that is supplied to the cathode channel contributes to the membrane humidification and the transport of protons inside the membrane structure. In automotive applications, the supply air is typically driven through an external membrane humidifier to absorb more moisture from the recirculated cathode exhaust. In the literature, humidifiers and fuel cell stacks have been separately investigated without considering whole-system configurations for water management. This study investigates changes in the cathode air characteristics through a membrane humidifier and compares two configurations using a humidifier bypass of the supply flow and exhaust flow to adjust the cathode inlet air relative humidity. Each component in the system was modeled using mathematical relations and converted into blocks of inputs and outputs in MATLAB/Simulink for simulation. The bypass valve was demonstrated to effectively reduce the relative humidity of the supply air from the saturation rate to above 60%, with a bypass fraction of up to 0.6 in both configurations. These adjustments provide system flexibility to accommodate load changes and prevent flooding in the stack channels. Bypassing the supply air through the humidifier effectively maintained consistent cathode inlet humidity across a wide operational range. A 0.4 bypass fraction on the supply side sustained a relative humidity of around 80% for the whole range of operating flow rates. In contrast, the exhaust-side bypass had a smaller impact, and the relative humidity of the cathode air was reduced when the flow rate and bypass fraction increased. This study further supports the control system design to regulate the bypass fraction according to load transients. [ABSTRACT FROM AUTHOR]
Copyright of Energies (19961073) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:19961073
DOI:10.3390/en16196986