دورية أكاديمية

Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense.

التفاصيل البيبلوغرافية
العنوان: Comprehensive and evolutionary analysis of Spodoptera litura-inducible Cytochrome P450 monooxygenase gene family in Glycine max elucidate their role in defense.
المؤلفون: Yadav, Manisha, Panwar, Ruby, Rustagi, Anjana, Chakraborty, Amrita, Roy, Amit, Singh, Indrakant K., Singh, Archana
المصدر: Frontiers in Plant Science; 2023, Vol. 14, p1-20, 20p
مصطلحات موضوعية: SOYBEAN, GENE families, CYTOCHROME P-450, SPODOPTERA, MONOOXYGENASES, MEDICAGO, JASMONATE
مستخلص: Plants being sessile organisms and lacking both circulating phagocytic cells and somatic adaptive immune response, have thrived on various defense mechanisms to fend off insect pests and invasion of pathogens. CYP450s are the versatile enzymes, which thwart plants against insect pests by ubiquitous biosynthesis of phytohormones, antioxidants, and secondary metabolites, utilizing them as feeding deterrents and direct toxins. Therefore, a comprehensive analysis of biotic stress-responsive CYPs from Glycine max was performed to ascertain their function against S. litura-infestation. Phylogenetic analysis and evolutionary studies on conserved domains and motifs disclosed the evolutionary correspondence of these GmCYPs with already characterized members of the CYP450 superfamily and close relatedness to Medicago truncatula. These GmCYPs were mapped on 13 chromosomes; they possess 1-8 exons; they have evolved due to duplication and are localized in endoplasmic reticulumn. Further, identification of methyljasmonate, salicylic acid, defense responsive and flavonoid biosynthesis regulating cis-acting elements, their interaction with biotic stress regulating proteins and their differential expression in diverse types of tissues, and during herbivory, depicted their responsiveness to biotic stress. Three-dimensional homology modelling of GmCYPs, docking with heme cofactor required for their catalytic activity and enzyme-substrate interactions were performed to understand the functional mechanism of their action. Moreover, to gain insight into their involvement in plant defense, gene expression analysis was evaluated, which revealed differential expression of 11 GmCYPs upon S. litura-infestation, 12 GmCYPs on wounding while foliar spray of ethylene, methyl-jasmonate and salicylic acid differentially regulated 11 GmCYPs, 6 GmCYPs, and 10 GmCYPs respectively. Our study comprehensively analysed the underlying mechanism of GmCYPs function during S. litura-infestation, which can be further utilized for functional characterization to develop new strategies for enhancing soybean resistance to insect pests. [ABSTRACT FROM AUTHOR]
Copyright of Frontiers in Plant Science is the property of Frontiers Media S.A. and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:1664462X
DOI:10.3389/fpls.2023.1221526