دورية أكاديمية

Investigating the kinetics of the intramolecular H-migration reaction class of methyl-ester peroxy radicals in low-temperature oxidation mechanisms of biodiesel.

التفاصيل البيبلوغرافية
العنوان: Investigating the kinetics of the intramolecular H-migration reaction class of methyl-ester peroxy radicals in low-temperature oxidation mechanisms of biodiesel.
المؤلفون: Li, Tao, Li, Juanqin, Chen, Siyu, Zhu, Quan, Li, Zerong
المصدر: Physical Chemistry Chemical Physics (PCCP); 12/14/2023, Vol. 25 Issue 46, p32078-32092, 15p
مستخلص: Biodiesel is a promising, sustainable, and carbon-neutral fuel. However, studying its combustion mechanisms comprehensively, both theoretically and experimentally, presents challenges due to the complexity and size of its molecules. One significant obstacle in determining low-temperature oxidation mechanisms for biodiesel is the lack of kinetic parameters for the reaction class of intramolecular H-migration reactions of alkyl-ester peroxy radicals, labeled as R(C=O)OR′–OO˙ (where the 'dot' represents the radical). Current biodiesel combustion mechanisms often estimate these parameters from the analogous reaction class of intramolecular H-migration reactions of alkyl peroxy radicals in alkane combustion mechanisms. However, such estimations are imprecise and neglect the unique characteristics of the ester group. This research aims to explore the kinetics of the reaction class of H-migration reactions of methyl-ester peroxy radicals. The reaction class is divided into 20 subclasses based on the newly formed cycle size of the transition state, the positions of the peroxy radical and the transferred H atom, and the types of carbons from which the H atom is transferred. Energy barriers for each subclass are calculated by using the CBS-QB3//M06-2X/6-311++G(d,p) method. High-pressure-limit and pressure-dependent rate constants ranging from 0.01 to 100 atm are determined using the transition state theory and Rice–Ramsberger–Kassel–Marcus/master-equation method, respectively. It is noted that the pressure-dependent rate constants calculated for each individual isomerization channel could bring some uncertainties while neglecting the interconnected pathways. A comprehensive comparison is made between our values of selected reactions and high-level calculated values of the corresponding reactions reported in the literature. The small deviation observed between these values indicates the accuracy and reliability of the energy barriers and rate constants calculated in this study. Additionally, our calculated high-pressure-limit rate constants are compared with the corresponding values in combustion mechanisms of esters, which were estimated based on analogous reactions of alkyl peroxy radicals. These comparative analyses shed light on the significant impact of the ester group on the kinetics, particularly when the ester group is involved in the reaction center. Finally, the high-pressure-limit rate rule and pressure-dependent rate rule for each subclass are derived by averaging the rate constants of reactions in each subclass. The accurate and reasonable rate rules for methyl-ester peroxy radicals developed in this study play a crucial role in enhancing our understanding of the low-temperature oxidation mechanisms of biodiesel. [ABSTRACT FROM AUTHOR]
Copyright of Physical Chemistry Chemical Physics (PCCP) is the property of Royal Society of Chemistry and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:14639076
DOI:10.1039/d3cp03376g