دورية أكاديمية

CO and HCHO Sensing by Single Au Atom-Decorated WS 2 Monolayer for Diagnosis of Thermal Aging Faults in the Dry-Type Reactor: A First-Principles Study.

التفاصيل البيبلوغرافية
العنوان: CO and HCHO Sensing by Single Au Atom-Decorated WS 2 Monolayer for Diagnosis of Thermal Aging Faults in the Dry-Type Reactor: A First-Principles Study.
المؤلفون: Zhao, Qi, Man, Yuyan, He, Jin, Li, Songyuan, Li, Lin
المصدر: Materials (1996-1944); Mar2024, Vol. 17 Issue 5, p1173, 11p
مصطلحات موضوعية: CARBON monoxide detectors, GAS detectors, GAS absorption & adsorption, THERMAL insulation, DENSITY of states, MONOMOLECULAR films, RECOVERY rooms
مستخلص: CO and HCHO are the main pyrolysis gases in long-term running dry-type reactors, and thus the diagnosis of thermal insulation faults inside such devices can be realized by sensing these gases. In this paper, a single Au atom-decorated WS2 (Au-WS2) monolayer is proposed as an original sensing material for CO or HCHO detection to evaluate the operation status of dry-type reactors. It was found that the Au atom prefers to be adsorbed at the top of the S atom of the pristine WS2 monolayer, wherein the binding force is calculated as −3.12 eV. The Au-WS2 monolayer behaves by chemisorption upon the introduction of CO and HCHO molecules, with the adsorption energies of −0.82 and −1.01 eV, respectively. The charge density difference was used to analyze the charge-transfer and bonding behaviors in the gas adsorptions, and the analysis of density of state as well as band structure indicate gas-sensing mechanisms. As calculated, the sensing responses of the Au-WS2 monolayer upon CO and HCHO molecule introduction were 58.7% and −74.4%, with recovery times of 0.01 s and 11.86 s, respectively. These findings reveal the favorable potential of the Au-WS2 monolayer to be a reusable and room-temperature sensing candidate for CO and HCHO detections. Moreover, the work function of the Au-WS2 monolayer was decreased by 13.0% after the adsorption of CO molecules, while it increased by 1.2% after the adsorption of HCHO molecules, which implies its possibility to be a work-function-based gas sensor for CO detection. This theoretical report paves the way for further investigations into WS2-based gas sensors in some other fields, and it is our hope that our findings can stimulate more reports on novel gas-sensing materials for application in evaluating the operation conditions of dry-type reactors. [ABSTRACT FROM AUTHOR]
Copyright of Materials (1996-1944) is the property of MDPI and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:19961944
DOI:10.3390/ma17051173