دورية أكاديمية

Mesomorphology of clathrate hydrates from molecular ordering.

التفاصيل البيبلوغرافية
العنوان: Mesomorphology of clathrate hydrates from molecular ordering.
المؤلفون: Bassani, Carlos L., Engel, Michael, Sum, Amadeu K.
المصدر: Journal of Chemical Physics; 5/21/2024, Vol. 160 Issue 19, p1-18, 18p
مصطلحات موضوعية: GAS hydrates, RENEWABLE energy transition (Government policy), THERMODYNAMIC equilibrium, TRANSPORT theory, DISCONTINUOUS precipitation, MOLECULAR dynamics
مستخلص: Clathrate hydrates are crystals formed by guest molecules that stabilize cages of hydrogen-bonded water molecules. Whereas thermodynamic equilibrium is well described via the van der Waals and Platteeuw approach, the increasing concerns with global warming and energy transition require extending the knowledge to non-equilibrium conditions in multiphase, sheared systems, in a multiscale framework. Potential macro-applications concern the storage of carbon dioxide in the form of clathrates, and the reduction of hydrate inhibition additives currently required in hydrocarbon production. We evidence porous mesomorphologies as key to bridging the molecular scales to macro-applications of low solubility guests. We discuss the coupling of molecular ordering with the mesoscales, including (i) the emergence of porous patterns as a combined factor from the walk over the free energy landscape and 3D competitive nucleation and growth and (ii) the role of molecular attachment rates in crystallization–diffusion models that allow predicting the timescale of pore sealing. This is a perspective study that discusses the use of discrete models (molecular dynamics) to build continuum models (phase field models, crystallization laws, and transport phenomena) to predict multiscale manifestations at a feasible computational cost. Several advances in correlated fields (ice, polymers, alloys, and nanoparticles) are discussed in the scenario of clathrate hydrates, as well as the challenges and necessary developments to push the field forward. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index