دورية أكاديمية

Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation.

التفاصيل البيبلوغرافية
العنوان: Observing System Simulation Experiments (OSSEs) in Support of Next-Generation NOAA Satellite Constellation.
المؤلفون: Cucurull, Lidia, Anthes, Richard A., Casey, Sean P. F., Mueller, Michael J., Vidal, Andres
المصدر: Bulletin of the American Meteorological Society; Jun2024, Vol. 105 Issue 6, pE884-E904, 21p
مصطلحات موضوعية: OCCULTATIONS (Astronomy), NUMERICAL weather forecasting, CONSTELLATIONS, SIMULATION methods & models, ORBITS (Astronomy), ARTIFICIAL satellite tracking
الشركة/الكيان: UNITED States. National Oceanic & Atmospheric Administration
مستخلص: Between 2014 and 2018, the National Oceanic and Atmospheric Administration conducted the NOAA Satellite Observing System Architecture (NSOSA) study to plan for the next generation of operational environmental satellites. The study generated some important questions that could be addressed by observing system simulation experiments (OSSEs). This paper describes a series of OSSEs in which benefits to numerical weather prediction from existing observing systems are combined with enhancements from potential future capabilities. Assessments include the relative value of the quantity of different types of thermodynamic soundings for global numerical weather applications. We compare the relative impact of several sounding configuration scenarios for infrared (IR), microwave (MW), and radio occultation (RO) observing capabilities. The main results are 1) increasing the revisit rate for satellite radiance soundings produces the largest benefits but at a significant cost by requiring an increase in the number of polar-orbiting satellites from 2 to 12; 2) a large positive impact is found when the number of RO soundings per day is increased well beyond current values and other observations are held at current levels of performance; 3) RO can be used as a mitigation strategy for lower MW/IR sounding revisit rates, particularly in the tropics; and 4) smaller benefits result from increasing the horizontal resolution along the track of the satellites of MW/IR satellite radiances. Furthermore, disaggregating IR and MW instruments into six evenly distributed sun-synchronous orbits is slightly more beneficial than when the same instruments are combined and collocated on three separate orbits. SIGNIFICANCE STATEMENT: The results of this paper are significant because they inform decision-makers about the future configuration of the NOAA's environmental satellite constellation, which serves millions of diverse users. [ABSTRACT FROM AUTHOR]
Copyright of Bulletin of the American Meteorological Society is the property of American Meteorological Society and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:00030007
DOI:10.1175/BAMS-D-23-0060.1