دورية أكاديمية

Seamount detection using SWOT-derived vertical gravity gradient: advancements and challenges.

التفاصيل البيبلوغرافية
العنوان: Seamount detection using SWOT-derived vertical gravity gradient: advancements and challenges.
المؤلفون: Yu, Daocheng, Weng, Zequn, Hwang, Cheinway, Zhu, Huizhong, Luo, Jia, Yuan, Jiajia, Ge, Sihao
المصدر: Geophysical Journal International; Jun2024, Vol. 237 Issue 3, p1780-1793, 14p
مصطلحات موضوعية: SYNTHETIC apertures, OCEAN surface topography, SYNTHETIC aperture radar, SEAMOUNTS, GRAVITY, DATA integration, OCEANIC plateaus
مستخلص: Launched on 2022 December 16, the Surface Water and Ocean Topography (SWOT) satellite, using synthetic aperture radar interferometric techniques, measures sea surface heights (SSHs) across two 50-km-wide swaths, offering high-resolution and accurate 2-D SSH observations. This study explores the efficiency of SWOT in seamount detection employing the vertical gravity gradient (VGG) derived from simulated SWOT SSH data. Simulated circular and elliptical seamounts (height: 900–1500 m) are integrated within the South China Sea's 4000 m background depths. Geoid perturbations induced by these seamounts are extracted through the residual depth model principle, subsequently merged with the DTU21MSS model for simulating SWOT SSH observations. For comparative assessment, SSH data from Jason-2 and Cryosat-2 are included. An automatic algorithm (AIFS) is presented to identify seamount centres and base polygons using VGG derived from simulated altimeter SSH data. The analysis reveals SWOT-derived VGGs precisely locate all seamount centres, base polygons and elliptical seamount azimuths. The merged Jason-2 and Cryosat-2 data face challenges with identifying small circular and elliptical seamounts. Detecting long narrow elliptical seamounts remains arduous; however, SWOT-derived VGGs successfully elucidate the approximate shapes and major axis azimuths of the elliptical seamounts. Validated against 'true values' of VGG, the root-mean-squared deviation (RMSD) of SWOT-derived VGG stands at 1.33 Eötvös, whereas the merged Jason-2 and Cryosat-2 data exhibit an RMSD of 1.93 Eötvös. This study shows the enhanced capability of SWOT from its high-resolution 2-D SSH observations in advancing seamount detection via satellite-derived VGG. We identify challenges and recommend improved detections using data integration and machine learning. [ABSTRACT FROM AUTHOR]
Copyright of Geophysical Journal International is the property of Oxford University Press / USA and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:0956540X
DOI:10.1093/gji/ggae138