دورية أكاديمية

Organic Passivation‐Enhanced Ferroelectricity in Perovskite Oxide Films.

التفاصيل البيبلوغرافية
العنوان: Organic Passivation‐Enhanced Ferroelectricity in Perovskite Oxide Films.
المؤلفون: Meng, Hao, Chen, Bingbing, Dai, Xiuhong, Guo, Jianxin, Li, Wenheng, Bai, Yuhua, Chang, Xuan, Zhang, Xuning, Chen, Jingwei, Gao, Qing, Liu, Baoting, Chen, Jianhui
المصدر: Advanced Science; 8/21/2024, Vol. 11 Issue 31, p1-7, 7p
مصطلحات موضوعية: OXIDE coating, PASSIVATION, PEROVSKITE, FERROELECTRICITY, ORGANIC coatings, RESEARCH personnel
مستخلص: Perovskite oxides and organic–inorganic halide perovskite materials, with numerous fascinating features, have been subjected to extensive studies. Most of the properties of perovskite materials are dependence on their ferroelectricity that denoted by remanent polarization (Pr). Thus, the increase of Pr in perovskite films is mainly an effort in material physics. At present, commonplace improvement schemes, i.e., controlling material crystallinity, and post‐annealing by using a high‐temperature process, are normally used. However, a simpler and temporal strategy for Pr improvement is always unavailable to perovskite material researchers. In this study, an organic coating layer, low‐temperature, and vacuum‐free strategy is proposed to improve the Pr, directly increasing the Pr from 36 to 56 µC cm−2. Further study finds that the increased Pr originates from the suppression of the oxygen defects and Ti defects. This organic coating layer strategy for passivating the defects may open a new way for the preparation of higher‐performance and cost‐effective perovskite products, further improving its prospective for application in the electron devices field. [ABSTRACT FROM AUTHOR]
Copyright of Advanced Science is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index