دورية أكاديمية

GbPP2C80 Interacts with GbWAKL14 to Negatively Co‐Regulate Resistance to Fusarium and Verticillium wilt via MPK3 and ROS Signaling in Sea Island Cotton.

التفاصيل البيبلوغرافية
العنوان: GbPP2C80 Interacts with GbWAKL14 to Negatively Co‐Regulate Resistance to Fusarium and Verticillium wilt via MPK3 and ROS Signaling in Sea Island Cotton.
المؤلفون: Zhao, Nan, Guo, Anhui, Wang, Weiran, Li, Bin, Wang, Meng, Zhou, Zixin, Jiang, Kaiyun, Aierxi, Alifu, Wang, Baoliang, Adjibolosoo, Daniel, Xia, Zhanghao, Li, Huijing, Cui, Yanan, Kong, Jie, Hua, Jinping
المصدر: Advanced Science; 8/14/2024, Vol. 11 Issue 30, p1-20, 20p
مصطلحات موضوعية: SEA Island cotton, VERTICILLIUM wilt diseases, SINGLE nucleotide polymorphisms, PHOSPHOPROTEIN phosphatases, REACTIVE oxygen species, COTTON
مستخلص: Fusarium wilt (FW) is widespread in global cotton production, but the mechanism underlying FW resistance in superior‐fiber‐quality Sea Island cotton is unclear. This study reveals that FW resistance has been the target of genetic improvement of Sea Island cotton in China since the 2010s. The key nonsynonymous single nucleotide polymorphism (SNP, T/C) of gene Gbar_D03G001670 encoding protein phosphatase 2C 80 (PP2C80) results in an amino acid shift (L/S), which is significantly associated with FW resistance of Sea Island cotton. Silencing GbPP2C80 increases FW resistance in Sea Island cotton, whereas overexpressing GbPP2C80 reduces FW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 exist synergistically in Sea Island cotton accessions with haplotype forms "susceptible–susceptible" (TA) and "resistant–resistant" (CC), and interact with each other. CRISPR/Cas9‐mediated knockout of GbWAKL14 enhances FW and Verticillium wilt (VW) resistance in upland cotton and overexpression of GbWAKL14 and GbPP2C80 weakens FW and VW resistance in Arabidopsis. GbPP2C80 and GbWAKL14 respond to FW and VW by modulating reactive oxygen species (ROS) content via affecting MPK3 expression. In summary, two tandem genes on chromosome D03, GbPP2C80, and GbWAKL14, functions as cooperative negative regulators in cotton wilt disease defense, providing novel genetic resources and molecular markers for the development of resistant cotton cultivars. [ABSTRACT FROM AUTHOR]
Copyright of Advanced Science is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index
الوصف
تدمد:21983844
DOI:10.1002/advs.202309785