دورية أكاديمية

Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance.

التفاصيل البيبلوغرافية
العنوان: Covalent EGFR inhibitor analysis reveals importance of reversible interactions to potency and mechanisms of drug resistance.
المؤلفون: Schwartz, Phillip A., Kuzmic, Petr, Solowiej, James, Bergqvist, Simon, Bolanos, Ben, Chau Almaden, Asako Nagata, Ryan, Kevin, Junli Feng, Dalvie, Deepak, Kath, John C., Meirong Xu, Wani, Revati, William Murray, Brion
المصدر: Proceedings of the National Academy of Sciences of the United States of America; 1/7/2014, Vol. 111 Issue 1, p173-178, 6p
مصطلحات موضوعية: DRUG resistance, MATHEMATICAL models, CHEMICAL reactions, CATALYSIS, ENZYME metabolism, DIFFERENTIAL equations
مستخلص: Covalent inhibition is a reemerging paradigm in kinase drug design, but the roles of inhibitor binding affinity and chemical reactivity in overall potency are not well-understood. To characterize the underlying molecular processes at a microscopic level and determine the appropriate kinetic constants, specialized experimental design and advanced numerical integration of differential equations are developed. Previously uncharacterized investigational covalent drugs reported here are shown to be extremely effective epidermal growth factor receptor (EGFR) inhibitors (kinact/Ki in the range 105–107 M−1s−1), despite their low specific reactivity (kinact ≤ 2.1 × 10−3 s−1), which is compensated for by high binding affinities (Ki < 1 nM). For inhibitors relying on reactivity to achieve potency, noncovalent enzyme–inhibitor complex partitioning between inhibitor dissociation and bond formation is central. Interestingly, reversible binding affinity of EGFR covalent inhibitors is highly correlated with antitumor cell potency. Furthermore, cellular potency for a subset of covalent inhibitors can be accounted for solely through reversible interactions. One reversible interaction is between EGFR-Cys797 nucleophile and the inhibitor’s reactive group, which may also contribute to drug resistance. Because covalent inhibitors target a cysteine residue, the effects of its oxidation on enzyme catalysis and inhibitor pharmacology are characterized. Oxidation of the EGFR cysteine nucleophile does not alter catalysis but has widely varied effects on inhibitor potency depending on the EGFR context (e.g., oncogenic mutations), type of oxidation (sulfinylation or glutathiolation), and inhibitor architecture. These methods, parameters, and insights provide a rational framework for assessing and designing effective covalent inhibitors. [ABSTRACT FROM AUTHOR]
Copyright of Proceedings of the National Academy of Sciences of the United States of America is the property of National Academy of Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
قاعدة البيانات: Complementary Index