Excited‐State Intramolecular Charge‐Transfer Dynamics in 4‐Dimethylamino‐4′‐cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective

التفاصيل البيبلوغرافية
العنوان: Excited‐State Intramolecular Charge‐Transfer Dynamics in 4‐Dimethylamino‐4′‐cyanodiphenylacetylene: An Ultrafast Raman Loss Spectroscopic Perspective
المؤلفون: Arvind Barak, Nishant Dhiman, Floriane Sturm, Florian Rauch, Yapamanu Adithya Lakshmanna, Karen S. Findlay, Andrew Beeby, Todd B. Marder, Siva Umapathy
المصدر: ChemPhotoChem, 2022, Vol.6(12), pp.e202200146 [Peer Reviewed Journal]
بيانات النشر: Wiley, 2022.
سنة النشر: 2022
مصطلحات موضوعية: ddc:540, Organic Chemistry, Physical and Theoretical Chemistry, Analytical Chemistry
الوصف: The D-π-A compound 4-dimethylamino-4′-cyanodiphenylacetylene (DACN-DPA) exhibits intramolecular charge transfer (ICT) upon photoexcitation. Ultrafast Raman Loss Spectroscopy (URLS) measurements show distinct spectral and temporal dynamics of C≡C and C=C vibrational modes in MeCN and n-hexane, revealing that ICT is strongly coupled to the structural dynamics. Photo-initiated intramolecular charge transfer (ICT) processes play a pivotal role in the excited state reaction dynamics in donor-bridge-acceptor systems. The efficacy of such a process can be improved by modifying the extent of π-conjugation, relative orientation/twists of the donor/acceptor entities and polarity of the environment. Herein, 4-dimethylamino-4′-cyanodiphenylacetylene (DACN-DPA), a typical donor-π-bridge-acceptor system, was chosen to unravel the role of various internal coordinates that govern the extent of photo-initiated ICT dynamics. Transient absorption (TA) spectra of DACN-DPA in n-hexane exhibit a lifetime of >2 ns indicating the formation of a triplet state while, in acetonitrile, a short time-constant of ∼2 ps indicates the formation of charge transferred species. Ultrafast Raman loss spectroscopy (URLS) measurements show distinct temporal and spectral dynamics of Raman bands associated with C≡C and C=C stretching vibrations. The appearance of a new band at ∼1492 cm−1 in acetonitrile clearly indicates structural modification during the ultrafast ICT process. Furthermore, these observations are supported by TD-DFT computations.
وصف الملف: application/pdf
تدمد: 2367-0932
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::067f41f4f1b130260c2c7f832992c5bb
https://doi.org/10.1002/cptc.202200146
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....067f41f4f1b130260c2c7f832992c5bb
قاعدة البيانات: OpenAIRE