Temperature and Driving Cycle Significantly Affect Carbonaceous Gas and Particle Matter Emissions from Diesel Trucks

التفاصيل البيبلوغرافية
العنوان: Temperature and Driving Cycle Significantly Affect Carbonaceous Gas and Particle Matter Emissions from Diesel Trucks
المؤلفون: Richard Baldauf, James Faircloth, Richard Snow, I. J. George, William Preston, Michael D. Hays, Barbara Jane George, Thomas C. Long, Joseph McDonald
المصدر: Energy Fuels
سنة النشر: 2020
مصطلحات موضوعية: Truck, chemistry.chemical_classification, 020209 energy, General Chemical Engineering, Energy Engineering and Power Technology, 02 engineering and technology, Organic compound, Article, Aerosol, Ultra-low-sulfur diesel, Diesel fuel, Fuel Technology, chemistry, Greenhouse gas, Environmental chemistry, 0202 electrical engineering, electronic engineering, information engineering, Particle, Driving cycle
الوصف: The present study examines the effects of fuel [an ultralow sulfur diesel (ULSD) versus a 20% v/v soy-based biodiesel–80% v/v petroleum blend (B20)], temperature, load, vehicle, driving cycle, and active regeneration technology on gas- and particle-phase carbon emissions from light and medium heavy-duty diesel vehicles (L/MHDDV). The study is performed using chassis dynamometer facilities that support low-temperature operation (−6.7 °C versus 21.7 °C) and heavy loads up to 12 000 kg. Organic and elemental carbon (OC-EC) composition of aerosol particles is determined using a thermal-optical technique. Gas- and particle-phase semivolatile organic compound (SVOC) emissions collected using traditional filter and polyurethane foam sampling media are analyzed using advanced gas chromatograpy/mass spectrometry methods. Study-wide OC and EC emissions are 0.735 and 0.733 mg/km, on average. The emissions factors for diesel vehicles vary widely, and use of a catalyzed diesel particle filter (CDPF) device generally mutes the carbon particle emissions in the exhaust, which contains ~90% w/w gas-phase matter. Interestingly, replacing ULSD with B20 did not significantly influence SVOC emissions, for which sums range from 0.030 to 9.4 mg/km for the L/MHDDVs. However, both low temperature and vehicle cold-starts significantly increase SVOCs in the exhaust. Real-time particle measurements indicate vehicle regeneration technology did influence emissions, although regeneration effects went unresolved using bulk chemistry techniques. A multistudy comparison of the toxic particle-phase polycyclic aromatic hydrocarbons (PAHs; molecular weight (MW) ≥ 252 amu) in diesel exhaust indicates emission factors that span up to 8 orders of magnitude over the past several decades. This study observes conditions under which PAH compounds with MW ≥ 252 amu appear in diesel particles downstream of the CDPF and can even reach low-end concentrations reported earlier for much larger HDDVs with poorly controlled exhaust streams. This rare observation suggests that analysis of PAHs in particles emitted from modern L/MHDDVs may be more complex than recognized previously.
تدمد: 0887-0624
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0aae91061f5379088b0ca5779140cfe3
https://pubmed.ncbi.nlm.nih.gov/32461712
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....0aae91061f5379088b0ca5779140cfe3
قاعدة البيانات: OpenAIRE