MicroRNA-26a/Death-Associated Protein Kinase 1 Signaling Induces Synucleinopathy and Dopaminergic Neuron Degeneration in Parkinson’s Disease

التفاصيل البيبلوغرافية
العنوان: MicroRNA-26a/Death-Associated Protein Kinase 1 Signaling Induces Synucleinopathy and Dopaminergic Neuron Degeneration in Parkinson’s Disease
المؤلفون: Man-Fei Deng, Heng-Ye Man, Youming Lu, Wan Xiong, Jian-Guo Chen, Zhi-Hou Liang, Xiongwei Zhu, Dan Liu, Jifeng Guo, Ying Su, Bo Hu, Beisha Tang, Ling-Qiang Zhu, Ao-Ji Xie
المصدر: Biol Psychiatry
بيانات النشر: Elsevier BV, 2019.
سنة النشر: 2019
مصطلحات موضوعية: Male, 0301 basic medicine, Programmed cell death, Parkinson's disease, Synucleinopathies, Biology, Article, 03 medical and health sciences, chemistry.chemical_compound, 0302 clinical medicine, medicine, Animals, Humans, Protein kinase A, Biological Psychiatry, Kinase, Dopaminergic Neurons, MPTP, Dopaminergic, Parkinson Disease, medicine.disease, Cell biology, Mice, Inbred C57BL, Substantia Nigra, Death-Associated Protein Kinases, Disease Models, Animal, MicroRNAs, 030104 developmental biology, Gene Expression Regulation, chemistry, Death-Associated Protein Kinase 1, Phosphorylation, 030217 neurology & neurosurgery, Signal Transduction
الوصف: Background Death-associated protein kinase 1 (DAPK1) is a widely distributed serine/threonine kinase that is critical for cell death in multiple neurological disorders, including Alzheimer’s disease and stroke. However, little is known about the role of DAPK1 in the pathogenesis of Parkinson’s disease (PD), the second most common neurodegenerative disorder. Methods We used Western blot and immunohistochemistry to evaluate the alteration of DAPK1. Quantitative polymerase chain reaction and fluorescence in situ hybridization were used to analyze the expression of microRNAs in PD mice and patients with PD. Rotarod, open field, and pole tests were used to evaluate the locomotor ability. Immunofluorescence, Western blot, and filter traps were used to evaluate synucleinopathy in PD mice. Results We found that DAPK1 is posttranscriptionally upregulated by a reduction in microRNA-26a (miR-26a) caused by a loss of the transcription factor CCAAT enhancer-binding protein alpha. The overexpression of DAPK1 in PD mice is positively correlated with neuronal synucleinopathy. Suppressing miR-26a or upregulating DAPK1 results in synucleinopathy, dopaminergic neuron cell death, and motor disabilities in wild-type mice. In contrast, genetic deletion of DAPK1 in dopaminergic neurons by crossing DAT-Cre mice with DAPK1 floxed mice effectively rescues the abnormalities in mice with chronic MPTP treatment. We further showed that DAPK1 overexpression promotes PD-like phenotypes by direct phosphorylation of α-synuclein at the serine 129 site. Correspondingly, a cell-permeable competing peptide that blocks the phosphorylation of α-synuclein prevents motor disorders, synucleinopathy, and dopaminergic neuron loss in the MPTP mice. Conclusions miR-26a/DAPK1 signaling cascades are essential in the formation of the molecular and cellular pathologies in PD.
تدمد: 0006-3223
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::3141d519d64eac608c4e09f8db5bd877
https://doi.org/10.1016/j.biopsych.2018.12.008
حقوق: OPEN
رقم الأكسشن: edsair.doi.dedup.....3141d519d64eac608c4e09f8db5bd877
قاعدة البيانات: OpenAIRE