Ion-Specific Protein/Water Interface Determines the Hofmeister Effect on the Kinetic Stability of Glucose Oxidase

التفاصيل البيبلوغرافية
العنوان: Ion-Specific Protein/Water Interface Determines the Hofmeister Effect on the Kinetic Stability of Glucose Oxidase
المؤلفون: Jozef Marek, Katarína Garajová, Jozef Hančár, Gabriel Žoldák, Erik Sedlák, Dagmar Sedláková
المصدر: The Journal of Physical Chemistry B. 123:7965-7973
بيانات النشر: American Chemical Society (ACS), 2019.
سنة النشر: 2019
مصطلحات موضوعية: Isothermal microcalorimetry, Hofmeister series, Kinetics, 010402 general chemistry, 01 natural sciences, Fungal Proteins, Surface tension, Glucose Oxidase, symbols.namesake, Protein structure, Enzyme Stability, 0103 physical sciences, Materials Chemistry, Urea, Glucose oxidase, Physical and Theoretical Chemistry, Protein Unfolding, Ions, chemistry.chemical_classification, 010304 chemical physics, biology, Chemistry, Temperature, Water, Langmuir adsorption model, 0104 chemical sciences, Surfaces, Coatings and Films, Enzyme, biology.protein, Biophysics, symbols, Salts, Aspergillus niger
الوصف: Homodimeric glucose oxidase (GOX) from Aspergillus niger is a prominent enzyme used for a number of applications in biotechnology and clinical diagnostics. For robust and long-term functional applications of GOX, the stability of the protein is of utmost importance. In vitro, GOX is irreversibly inactivated over time by a mechanism that is poorly understood, and hence, it presents a significant drawback for the development of strategies to stabilize the enzyme. We show that the nonequilibrium stability of GOX is fully described by a one-step conformational unfolding kinetics. To explore the strategies for improving GOX nonequilibrium stability, the effect of salts of the Hofmeister series is examined using microcalorimetry. We obtain activation energies Ea and inactivation temperatures Tk (at which the irreversible step is 1.0 min-1) as a function of the salt types and concentrations. Based on the analysis by the extended Langmuir model, we find that at high salt concentrations (>1 M) the Hofmeister effect on inactivation temperature is determined by the universal ion-specific effect on the protein/water interface, which apparently does not depend significantly on a particular amino-acid sequence and 3D protein structure. Our findings identify protein/water interfacial tension as a critical physicochemical attribute of excipients that is crucial for increasing enzyme kinetic stability.
تدمد: 1520-5207
1520-6106
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bde69bdb909a0f7bf8c5c368ad209439
https://doi.org/10.1021/acs.jpcb.9b05195
حقوق: CLOSED
رقم الأكسشن: edsair.doi.dedup.....bde69bdb909a0f7bf8c5c368ad209439
قاعدة البيانات: OpenAIRE