REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES

التفاصيل البيبلوغرافية
العنوان: REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES
المؤلفون: Timothy R. Baker, Tomás A. Easdale, Campbell O. Webb, Jérôme Chave, Helene C. Muller-Landau, Hans ter Steege
المصدر: Ecological Applications. 16:2356-2367
بيانات النشر: Wiley, 2006.
سنة النشر: 2006
مصطلحات موضوعية: Tropical Climate, Geography, Ecology, Phylogenetic tree, Amazon rainforest, Altitude, Amazonian, Central America, South America, Biology, Angiosperm Phylogeny Group, Wood, Trees, Taxon, Genus, Phylogenetics, Phylogeny
الوصف: Wood density is a crucial variable in carbon accounting programs of both secondary and old-growth tropical forests. It also is the best single descriptor of wood: it correlates with numerous morphological, mechanical, physiological, and ecological properties. To explore the extent to which wood density could be estimated for rare or poorly censused taxa, and possible sources of variation in this trait, we analyzed regional, taxonomic, and phylogenetic variation in wood density among 2456 tree species from Central and South America. Wood density varied over more than one order of magnitude across species, with an overall mean of 0.645 g/cm3. Our geographical analysis showed significant decreases in wood density with increasing altitude and significant differences among low-altitude geographical regions: wet forests of Central America and western Amazonia have significantly lower mean wood density than dry forests of Central and South America, eastern and central Amazonian forests, and the Atlantic forests of Brazil; and eastern Amazonian forests have lower wood densities than the dry forests and the Atlantic forest. A nested analysis of variance showed that 74% of the species-level wood density variation was explained at the genus level, 34% at the Angiosperm Phylogeny Group (APG) family level, and 19% at the APG order level. This indicates that genus-level means give reliable approximations of values of species, except in a few hypervariable genera. We also studied which evolutionary shifts in wood density occurred in the phylogeny of seed plants using a composite phylogenetic tree. Major changes were observed at deep nodes (Eurosid 1), and also in more recent divergences (for instance in the Rhamnoids, Simaroubaceae, and Anacardiaceae). Our unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting programs.
تدمد: 1051-0761
URL الوصول: https://explore.openaire.eu/search/publication?articleId=doi_dedup___::dffea69da2cd62152bffd3db711cddb6
https://doi.org/10.1890/1051-0761(2006)016[2356:rapvow]2.0.co;2
حقوق: CLOSED
رقم الأكسشن: edsair.doi.dedup.....dffea69da2cd62152bffd3db711cddb6
قاعدة البيانات: OpenAIRE