Bioavailability of lab-contaminated and native polycyclic aromatic hydrocarbons to the amphipod Corophium volutator relates to chemical desorption

التفاصيل البيبلوغرافية
العنوان: Bioavailability of lab-contaminated and native polycyclic aromatic hydrocarbons to the amphipod Corophium volutator relates to chemical desorption
المؤلفون: R H, Kraaij, S, Ciarelli, J, Tolls, B J, Kater, A, Belfroid
المصدر: Environmental toxicology and chemistry. 20(8)
سنة النشر: 2001
مصطلحات موضوعية: Geologic Sediments, Kinetics, Dose-Response Relationship, Drug, Crustacea, Animals, Biological Availability, Tissue Distribution, Environmental Exposure, Polycyclic Aromatic Hydrocarbons
الوصف: In the present study, the relationship between bioavailability of polycyclic aromatic hydrocarbons (PAHs) to benthic amphipods and the PAH desorption kinetics was examined. To that end, field-contaminated sediment was treated in three different ways. One subsample had no addition of PAHs and contained native PAHs only. To a second subsample, six PAHs (phenanthrene, fluoranthene, anthracene, pyrene, benzo[b]fluoranthene, and benzo[k]fluoranthene) were added in the laboratory. Two of the PAHs were added at higher concentrations to a third subsample, serving as a control for concentration-dependent uptake. Marine amphipods (Corophium volutator) were exposed to the three subsamples for a maximum of 25 d and were subsequently analyzed. Desorption kinetics were determined for both the lab-contaminated and the native PAHs. The biota-to-sediment accumulation factor (BSAF) values of the individual native and lab-contaminated PAHs correlated well with the rapidly desorbing fraction (R2 = 0.76). The BSAFs were 1.4 to 3.3 higher for the lab-contaminated PAHs compared with the native PAHs, while the difference between the rapidly desorbing fractions was a factor of 1.1 to 1.8. The BSAFs of the lab-contaminated PAHs in the second and third subsample were equal, indicating concentration-independent accumulation. The results suggest that lab-contaminated PAHs are more available to amphipods than native PAHs and that differences in bioavailability of lab-contaminated and native PAHs to marine amphipods are related to differences in desorption behavior.
تدمد: 0730-7268
URL الوصول: https://explore.openaire.eu/search/publication?articleId=pmid________::976cfabd70ebc93c2171f3f370cfadf7
https://pubmed.ncbi.nlm.nih.gov/11491554
رقم الأكسشن: edsair.pmid..........976cfabd70ebc93c2171f3f370cfadf7
قاعدة البيانات: OpenAIRE