The Galactic Faraday rotation sky 2020

التفاصيل البيبلوغرافية
العنوان: The Galactic Faraday rotation sky 2020
المؤلفون: Hutschenreuter, Sebastian, Anderson, Craig S., Betti, Sarah, Bower, Geoffrey C., Brown, Jo-Anne, Brüggen, Marcus, Carretti, Ettore, Clarke, Tracy, Clegg, Andrew, Costa, Allison, Croft, Steve, Van Eck, Cameron, Gaensler, B. M., de Gasperin, Francesco, Haverkorn, Marijke, Heald, George, Hull, Charles L. H., Inoue, Makoto, Johnston-Hollitt, Melanie, Kaczmarek, Jane, Law, Casey, Ma, Yik Ki, MacMahon, David, Mao, Sui Ann, Riseley, Christopher, Roy, Subhashis, Shanahan, Russell, Shimwell, Timothy, Stil, Jeroen, Sobey, Charlotte, O'Sullivan, Shane, Tasse, Cyril, Vacca, Valentina, Vernstrom, Tessa, Williams, Peter K. G., Wright, Melvyn, Enßlin, Torsten A.
المصدر: A&A 657, A43 (2022)
سنة النشر: 2021
المجموعة: Astrophysics
مصطلحات موضوعية: Astrophysics - Astrophysics of Galaxies
الوصف: This work gives an update to existing reconstructions of the Galactic Faraday rotation sky by processing almost all Faraday rotation data sets available at the end of the year 2020. Observations of extra-Galactic sources in recent years have, among other regions, further illuminated the previously under-constrained southern celestial sky, as well as parts of the inner disc of the Milky Way. This has culminated in an all-sky data set of 55,190 data points, which is a significant expansion on the 41,330 used in previous works, hence making an updated separation of the Galactic component a promising venture. The increased source density allows us to present our results in a resolution of about $1.3\cdot 10^{-2}\, \mathrm{deg}^2$ ($46.8\,\mathrm{arcmin}^2$), which is a twofold increase compared to previous works. As for previous Faraday rotation sky reconstructions, this work is based on information field theory, a Bayesian inference scheme for field-like quantities which handles noisy and incomplete data. In contrast to previous reconstructions, we find a significantly thinner and pronounced Galactic disc with small-scale structures exceeding values of several thousand $\mathrm{rad}\,\mathrm{m}^{-2}$. The improvements can mainly be attributed to the new catalog of Faraday data, but are also supported by advances in correlation structure modeling within numerical information field theory. We furthermore give a detailed discussion on statistical properties of the Faraday rotation sky and investigate correlations to other data sets.
Comment: accepted in A&A; 15 pages, 12 Figures; results at https://wwwmpa.mpa-garching.mpg.de/~ensslin/research/data/faraday2020.html and http://cutouts.cirada.ca/rmcutout
نوع الوثيقة: Working Paper
DOI: 10.1051/0004-6361/202140486
URL الوصول: http://arxiv.org/abs/2102.01709
رقم الأكسشن: edsarx.2102.01709
قاعدة البيانات: arXiv
الوصف
DOI:10.1051/0004-6361/202140486