High-Round QAOA for MAX $k$-SAT on Trapped Ion NISQ Devices

التفاصيل البيبلوغرافية
العنوان: High-Round QAOA for MAX $k$-SAT on Trapped Ion NISQ Devices
المؤلفون: Pelofske, Elijah, Bärtschi, Andreas, Golden, John, Eidenbenz, Stephan
سنة النشر: 2023
المجموعة: Computer Science
Quantum Physics
مصطلحات موضوعية: Quantum Physics, Computer Science - Discrete Mathematics, Computer Science - Emerging Technologies
الوصف: The Quantum Alternating Operator Ansatz (QAOA) is a hybrid classical-quantum algorithm that aims to sample the optimal solution(s) of discrete combinatorial optimization problems. We present optimized QAOA circuit constructions for sampling MAX $k$-SAT problems, specifically for $k=3$ and $k=4$. The novel $4$-SAT QAOA circuit construction we present uses measurement based uncomputation, followed by classical feed forward conditional operations. The QAOA circuit parameters for $3$-SAT are optimized via exact classical (noise-free) simulation, using HPC resources to simulate up to $20$ rounds on $10$ qubits. In order to explore the limits of current NISQ devices we execute these optimized QAOA circuits for random $3$-SAT test instances with clause-to-variable ratio $4$ on four trapped ion quantum computers: Quantinuum H1-1 (20 qubits), IonQ Harmony (11 qubits), IonQ Aria 1 (25 qubits), and IonQ Forte (30 qubits). The QAOA circuits that are executed include $n=10$ up to $p=20$, and $n=22$ for $p=1$ and $p=2$. The high round circuits use upwards of 9,000 individual gate instructions, making these some of the largest QAOA circuits executed on NISQ devices. Our main finding is that current NISQ devices perform best at low round counts (i.e., $p = 1,\ldots, 5$) and then -- as expected due to noise -- gradually start returning satisfiability truth assignments that are no better than randomly picked solutions as the number of QAOA rounds are further increased.
نوع الوثيقة: Working Paper
DOI: 10.1109/QCE57702.2023.00064
URL الوصول: http://arxiv.org/abs/2306.03238
رقم الأكسشن: edsarx.2306.03238
قاعدة البيانات: arXiv
الوصف
DOI:10.1109/QCE57702.2023.00064