Data-Free Generative Replay for Class-Incremental Learning on Imbalanced Data

التفاصيل البيبلوغرافية
العنوان: Data-Free Generative Replay for Class-Incremental Learning on Imbalanced Data
المؤلفون: Younis, Sohaib, Seeger, Bernhard
سنة النشر: 2024
المجموعة: Computer Science
مصطلحات موضوعية: Computer Science - Machine Learning, Computer Science - Artificial Intelligence
الوصف: Continual learning is a challenging problem in machine learning, especially for image classification tasks with imbalanced datasets. It becomes even more challenging when it involves learning new classes incrementally. One method for incremental class learning, addressing dataset imbalance, is rehearsal using previously stored data. In rehearsal-based methods, access to previous data is required for either training the classifier or the generator, but it may not be feasible due to storage, legal, or data access constraints. Although there are many rehearsal-free alternatives for class incremental learning, such as parameter or loss regularization, knowledge distillation, and dynamic architectures, they do not consistently achieve good results, especially on imbalanced data. This paper proposes a new approach called Data-Free Generative Replay (DFGR) for class incremental learning, where the generator is trained without access to real data. In addition, DFGR also addresses dataset imbalance in continual learning of an image classifier. Instead of using training data, DFGR trains a generator using mean and variance statistics of batch-norm and feature maps derived from a pre-trained classification model. The results of our experiments demonstrate that DFGR performs significantly better than other data-free methods and reveal the performance impact of specific parameter settings. DFGR achieves up to 88.5% and 46.6% accuracy on MNIST and FashionMNIST datasets, respectively. Our code is available at https://github.com/2younis/DFGR
نوع الوثيقة: Working Paper
URL الوصول: http://arxiv.org/abs/2406.09052
رقم الأكسشن: edsarx.2406.09052
قاعدة البيانات: arXiv