دورية أكاديمية

Molecular Dynamics Simulation Study on the Interactions of Mixed Cationic/Anionic Collectors on Muscovite (001) Surface in Aqueous Solution

التفاصيل البيبلوغرافية
العنوان: Molecular Dynamics Simulation Study on the Interactions of Mixed Cationic/Anionic Collectors on Muscovite (001) Surface in Aqueous Solution
المؤلفون: Yuli Di, Ao Jiang, Haiyan Huang, Lin Deng, Dafu Zhang, Wenwei Deng, Rui Wang, Qian Luo, Shanhua Chen
المصدر: Materials, Vol 15, Iss 11, p 3816 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Technology
LCC:Electrical engineering. Electronics. Nuclear engineering
LCC:Engineering (General). Civil engineering (General)
LCC:Microscopy
LCC:Descriptive and experimental mechanics
مصطلحات موضوعية: molecular dynamics simulation, mixed cationic and anionic collectors, muscovite, mineral flotation, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
الوصف: In this study, the adsorption mechanisms of dodecylamine hydrochloride(DDAHC), sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfonate(SDBS), and their mixed anionic/cationic collectors at ten different molar ratios on a muscovite (Mcv) surface in neutral aqueous solution were assessed by molecular dynamics simulations (MDS). According to the snapshot, interaction energy, radial distribution function (RDF), and density profile between the Mcv surface and collector molecules, the individual DDAHC collector was an effective collector for the flotation of Mcv. The molar ratio of anionic/cationic collectors was determined to be an essential factor in the flotation recovery of Mcv. The DDAHC collector was involved in the adsorption of the mixed anionic/cationic collectors on the Mcv (001) surface, whereas SDS and SDBS collectors were co-adsorbed with DDAHC. The mixed cationic/anionic collector showed the best adsorption on the Mcv surface in a molar ratio of 2. Additionally, SDBS, which has one more benzene ring than SDS, was more likely to form spherical micelles with DDAHC, thus resulting in better adsorption on the Mcv surface. The results of micro-flotation experiments indicated that the DDAHC collector could improve the flotation recovery of Mcv in neutral aqueous solution, which was in agreement with MDS-derived findings. In conclusion, DDAHC alone is the optimum collector for Mcv flotation under the neutral aqueous conditions, while the mixture of DDAHC and SDBS collectors (molar ratio = 2:1) exhibits the similar flotation performance.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1944
Relation: https://www.mdpi.com/1996-1944/15/11/3816; https://doaj.org/toc/1996-1944
DOI: 10.3390/ma15113816
URL الوصول: https://doaj.org/article/18dd1e4bcd4141918f3c45a6b30dd3ae
رقم الأكسشن: edsdoj.18dd1e4bcd4141918f3c45a6b30dd3ae
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961944
DOI:10.3390/ma15113816