دورية أكاديمية

Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques.

التفاصيل البيبلوغرافية
العنوان: Behavioral flexibility is associated with changes in structure and function distributed across a frontal cortical network in macaques.
المؤلفون: Jérôme Sallet, MaryAnn P Noonan, Adam Thomas, Jill X O'Reilly, Jesper Anderson, Georgios K Papageorgiou, Franz X Neubert, Bashir Ahmed, Jackson Smith, Andrew H Bell, Mark J Buckley, Léa Roumazeilles, Steven Cuell, Mark E Walton, Kristine Krug, Rogier B Mars, Matthew F S Rushworth
المصدر: PLoS Biology, Vol 18, Iss 5, p e3000605 (2020)
بيانات النشر: Public Library of Science (PLoS), 2020.
سنة النشر: 2020
المجموعة: LCC:Biology (General)
مصطلحات موضوعية: Biology (General), QH301-705.5
الوصف: One of the most influential accounts of central orbitofrontal cortex-that it mediates behavioral flexibility-has been challenged by the finding that discrimination reversal in macaques, the classic test of behavioral flexibility, is unaffected when lesions are made by excitotoxin injection rather than aspiration. This suggests that the critical brain circuit mediating behavioral flexibility in reversal tasks lies beyond the central orbitofrontal cortex. To determine its identity, a group of nine macaques were taught discrimination reversal learning tasks, and its impact on gray matter was measured. Magnetic resonance imaging scans were taken before and after learning and compared with scans from two control groups, each comprising 10 animals. One control group learned discrimination tasks that were similar but lacked any reversal component, and the other control group engaged in no learning. Gray matter changes were prominent in posterior orbitofrontal cortex/anterior insula but were also found in three other frontal cortical regions: lateral orbitofrontal cortex (orbital part of area 12 [12o]), cingulate cortex, and lateral prefrontal cortex. In a second analysis, neural activity in posterior orbitofrontal cortex/anterior insula was measured at rest, and its pattern of coupling with the other frontal cortical regions was assessed. Activity coupling increased significantly in the reversal learning group in comparison with controls. In a final set of experiments, we used similar structural imaging procedures and analyses to demonstrate that aspiration lesion of central orbitofrontal cortex, of the type known to affect discrimination learning, affected structure and activity in the same frontal cortical circuit. The results identify a distributed frontal cortical circuit associated with behavioral flexibility.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1544-9173
1545-7885
Relation: https://doaj.org/toc/1544-9173; https://doaj.org/toc/1545-7885
DOI: 10.1371/journal.pbio.3000605
URL الوصول: https://doaj.org/article/1b77b421a21a4517b3d9b2fb6368e1f6
رقم الأكسشن: edsdoj.1b77b421a21a4517b3d9b2fb6368e1f6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:15449173
15457885
DOI:10.1371/journal.pbio.3000605