دورية أكاديمية

Radiative impact of an extreme Arctic biomass-burning event

التفاصيل البيبلوغرافية
العنوان: Radiative impact of an extreme Arctic biomass-burning event
المؤلفون: J. Lisok, A. Rozwadowska, J. G. Pedersen, K. M. Markowicz, C. Ritter, J. W. Kaminski, J. Struzewska, M. Mazzola, R. Udisti, S. Becagli, I. Gorecka
المصدر: Atmospheric Chemistry and Physics, Vol 18, Pp 8829-8848 (2018)
بيانات النشر: Copernicus Publications, 2018.
سنة النشر: 2018
المجموعة: LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: Physics, QC1-999, Chemistry, QD1-999
الوصف: The aim of the presented study was to investigate the impact on the radiation budget of a biomass-burning plume, transported from Alaska to the High Arctic region of Ny-Ålesund, Svalbard, in early July 2015. Since the mean aerosol optical depth increased by the factor of 10 above the average summer background values, this large aerosol load event is considered particularly exceptional in the last 25 years. In situ data with hygroscopic growth equations, as well as remote sensing measurements as inputs to radiative transfer models, were used, in order to estimate biases associated with (i) hygroscopicity, (ii) variability of single-scattering albedo profiles, and (iii) plane-parallel closure of the modelled atmosphere. A chemical weather model with satellite-derived biomass-burning emissions was applied to interpret the transport and transformation pathways. The provided MODTRAN radiative transfer model (RTM) simulations for the smoke event (14:00 9 July–11:30 11 July) resulted in a mean aerosol direct radiative forcing at the levels of −78.9 and −47.0 W m−2 at the surface and at the top of the atmosphere, respectively, for the mean value of aerosol optical depth equal to 0.64 at 550 nm. This corresponded to the average clear-sky direct radiative forcing of −43.3 W m−2, estimated by radiometer and model simulations at the surface. Ultimately, uncertainty associated with the plane-parallel atmosphere approximation altered results by about 2 W m−2. Furthermore, model-derived aerosol direct radiative forcing efficiency reached on average −126 W m−2∕τ550 and −71 W m−2∕τ550 at the surface and at the top of the atmosphere, respectively. The heating rate, estimated at up to 1.8 K day−1 inside the biomass-burning plume, implied vertical mixing with turbulent kinetic energy of 0.3 m2 s−2.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1680-7316
1680-7324
Relation: https://www.atmos-chem-phys.net/18/8829/2018/acp-18-8829-2018.pdf; https://doaj.org/toc/1680-7316; https://doaj.org/toc/1680-7324
DOI: 10.5194/acp-18-8829-2018
URL الوصول: https://doaj.org/article/2d6fa6f45a534d6e922d002227cb4186
رقم الأكسشن: edsdoj.2d6fa6f45a534d6e922d002227cb4186
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16807316
16807324
DOI:10.5194/acp-18-8829-2018