دورية أكاديمية

Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.

التفاصيل البيبلوغرافية
العنوان: Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum.
المؤلفون: Jennifer Popko, Cornelia Herrfurth, Kirstin Feussner, Till Ischebeck, Tim Iven, Richard Haslam, Mary Hamilton, Olga Sayanova, Jonathan Napier, Inna Khozin-Goldberg, Ivo Feussner
المصدر: PLoS ONE, Vol 11, Iss 10, p e0164673 (2016)
بيانات النشر: Public Library of Science (PLoS), 2016.
سنة النشر: 2016
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Oleaginous microalgae are considered as a promising resource for the production of biofuels. Especially diatoms arouse interest as biofuel producers since they are most productive in carbon fixation and very flexible to environmental changes in the nature. Naturally, triacylglycerol (TAG) accumulation in algae only occurs under stress conditions like nitrogen-limitation. We focused on Phaeodactylum strain Pt4 (UTEX 646), because of its ability to grow in medium with low salinity and therefore being suited when saline water is less available or for wastewater cultivation strategies. Our data show an increase in neutral lipids during nitrogen-depletion and predominantly 16:0 and 16:1(n-7) accumulated in the TAG fraction. The molecular species composition of TAG suggests a remodeling primarily from the betaine lipid diacylglyceroltrimethylhomoserine (DGTS), but a contribution of the chloroplast galactolipid monogalactosyldiacylglycerol (MGDG) cannot be excluded. Interestingly, the acyl-CoA pool is rich in 20:5(n-3) and 22:6(n-3) in all analyzed conditions, but these fatty acids are almost excluded from TAG. Other metabolites most obviously depleted under nitrogen-starvation were amino acids, lyso-phospholipids and tricarboxylic acid (TCA) cycle intermediates, whereas sulfur-containing metabolites as dimethylsulfoniopropionate, dimethylsulfoniobutyrate and methylsulfate as well as short acyl chain carnitines, propanoyl-carnitine and butanoyl-carnitine increased upon nitrogen-starvation. Moreover, the Calvin cycle may be de-regulated since sedoheptulose accumulated after nitrogen-depletion. Together the data provide now the basis for new strategies to improve lipid production and storage in Phaeodactylum strain Pt4.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1932-6203
Relation: http://europepmc.org/articles/PMC5063337?pdf=render; https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0164673
URL الوصول: https://doaj.org/article/30a9b9cc958e41ed95e566d94b817e91
رقم الأكسشن: edsdoj.30a9b9cc958e41ed95e566d94b817e91
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19326203
DOI:10.1371/journal.pone.0164673