دورية أكاديمية

A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa

التفاصيل البيبلوغرافية
العنوان: A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa
المؤلفون: Megan L. Matthews, Jack P. Wang, Ronald Sederoff, Vincent L. Chiang, Cranos M. Williams
المصدر: Computational and Structural Biotechnology Journal, Vol 19, Iss , Pp 168-182 (2021)
بيانات النشر: Elsevier, 2021.
سنة النشر: 2021
المجموعة: LCC:Biotechnology
مصطلحات موضوعية: Lignin biosynthesis, Multiscale modeling, Cross-regulatory influences, Random forests, Biotechnology, TP248.13-248.65
الوصف: Understanding the mechanisms behind lignin formation is an important research area with significant implications for the bioenergy and biomaterial industries. Computational models are indispensable tools for understanding this complex process. Models of the monolignol pathway in Populus trichocarpa and other plants have been developed to explore how transgenic modifications affect important bioenergy traits. Many of these models, however, only capture one level of biological organization and are unable to capture regulation across multiple biological scales. This limits their ability to predict how gene modification strategies will impact lignin and other wood properties. While the first multiscale model of lignin biosynthesis in P. trichocarpa spanned the transcript, protein, metabolic, and phenotypic layers, it did not account for cross-regulatory influences that could impact abundances of untargeted monolignol transcripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three main components of this multiscale model are (1) a transcript-protein model capturing cross-regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the perturbation of PtrC3H3 and PtrCAld5H1&2 monolignol genes as a candidate strategy for increasing saccharification efficiencies while reducing negative impacts on wood density and height.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2001-0370
Relation: http://www.sciencedirect.com/science/article/pii/S2001037020305134; https://doaj.org/toc/2001-0370
DOI: 10.1016/j.csbj.2020.11.046
URL الوصول: https://doaj.org/article/3c677f0e173b4052a891638d56c8ff2a
رقم الأكسشن: edsdoj.3c677f0e173b4052a891638d56c8ff2a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20010370
DOI:10.1016/j.csbj.2020.11.046