دورية أكاديمية

Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid

التفاصيل البيبلوغرافية
العنوان: Engineering of Escherichia coli for Krebs cycle-dependent production of malic acid
المؤلفون: Debora Trichez, Clément Auriol, Audrey Baylac, Romain Irague, Clémentine Dressaire, Marc Carnicer-Heras, Stéphanie Heux, Jean Marie François, Thomas Walther
المصدر: Microbial Cell Factories, Vol 17, Iss 1, Pp 1-12 (2018)
بيانات النشر: BMC, 2018.
سنة النشر: 2018
المجموعة: LCC:Microbiology
مصطلحات موضوعية: Malic acid, Escherichia coli, Flux analysis, Metabolic engineering, Microbiology, QR1-502
الوصف: Abstract Background Malate is a C4-dicarboxylic acid widely used as an acidulant in the food and beverage industry. Rational engineering has been performed in the past for the development of microbial strains capable of efficient production of this metabolite. However, as malate can be a precursor for specialty chemicals, such as 2,4-dihydroxybutyric acid, that require additional cofactors NADP(H) and ATP, we set out to reengineer Escherichia coli for Krebs cycle-dependent production of malic acid that can satisfy these requirements. Results We found that significant malate production required at least simultaneous deletion of all malic enzymes and dehydrogenases, and concomitant expression of a malate-insensitive PEP carboxylase. Metabolic flux analysis using 13C-labeled glucose indicated that malate-producing strains had a very high flux over the glyoxylate shunt with almost no flux passing through the isocitrate dehydrogenase reaction. The highest malate yield of 0.82 mol/mol was obtained with E. coli Δmdh Δmqo ΔmaeAB ΔiclR ΔarcA which expressed malate-insensitive PEP carboxylase PpcK620S and NADH-insensitive citrate synthase GltAR164L. We also showed that inactivation of the dicarboxylic acid transporter DcuA strongly reduced malate production arguing for a pivotal role of this permease in malate export. Conclusions Since more NAD(P)H and ATP cofactors are generated in the Krebs cycle-dependent malate production when compared to pathways which depend on the function of anaplerotic PEP carboxylase or PEP carboxykinase enzymes, the engineered strain developed in this study can serve as a platform to increase biosynthesis of malate-derived metabolites such as 2,4-dihydroxybutyric acid.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1475-2859
Relation: http://link.springer.com/article/10.1186/s12934-018-0959-y; https://doaj.org/toc/1475-2859
DOI: 10.1186/s12934-018-0959-y
URL الوصول: https://doaj.org/article/a3de523a6c104bd59c4a1d068bd06ebb
رقم الأكسشن: edsdoj.3de523a6c104bd59c4a1d068bd06ebb
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14752859
DOI:10.1186/s12934-018-0959-y