دورية أكاديمية

Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata.

التفاصيل البيبلوغرافية
العنوان: Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata.
المؤلفون: Sheena D Singh-Babak, Tomas Babak, Stephanie Diezmann, Jessica A Hill, Jinglin Lucy Xie, Ying-Lien Chen, Susan M Poutanen, Robert P Rennie, Joseph Heitman, Leah E Cowen
المصدر: PLoS Pathogens, Vol 8, Iss 5, p e1002718 (2012)
بيانات النشر: Public Library of Science (PLoS), 2012.
سنة النشر: 2012
المجموعة: LCC:Immunologic diseases. Allergy
LCC:Biology (General)
مصطلحات موضوعية: Immunologic diseases. Allergy, RC581-607, Biology (General), QH301-705.5
الوصف: The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1553-7366
1553-7374
Relation: http://europepmc.org/articles/PMC3355103?pdf=render; https://doaj.org/toc/1553-7366; https://doaj.org/toc/1553-7374
DOI: 10.1371/journal.ppat.1002718
URL الوصول: https://doaj.org/article/5a2aa463c08945bdbe7529d0e24f340a
رقم الأكسشن: edsdoj.5a2aa463c08945bdbe7529d0e24f340a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:15537366
15537374
DOI:10.1371/journal.ppat.1002718