دورية أكاديمية

Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane

التفاصيل البيبلوغرافية
العنوان: Methane, ethane, and propane production in Greenland ice core samples and a first isotopic characterization of excess methane
المؤلفون: M. Mühl, J. Schmitt, B. Seth, J. E. Lee, J. S. Edwards, E. J. Brook, T. Blunier, H. Fischer
المصدر: Climate of the Past, Vol 19, Pp 999-1025 (2023)
بيانات النشر: Copernicus Publications, 2023.
سنة النشر: 2023
المجموعة: LCC:Environmental pollution
LCC:Environmental protection
LCC:Environmental sciences
مصطلحات موضوعية: Environmental pollution, TD172-193.5, Environmental protection, TD169-171.8, Environmental sciences, GE1-350
الوصف: Air trapped in polar ice provides unique records of the past atmospheric composition ranging from key greenhouse gases such as methane (CH4) to short-lived trace gases like ethane (C2H6) and propane (C3H8). Recently, the comparison of CH4 records obtained using different extraction methods revealed disagreements in the CH4 concentration for the last glacial in Greenland ice. Elevated methane levels were detected in dust-rich ice core sections measured discretely, pointing to a process sensitive to the melt extraction technique. To shed light on the underlying mechanism, we performed targeted experiments and analyzed samples for methane and the short-chain alkanes ethane and propane covering the time interval from 12 to 42 kyr. Here, we report our findings of these elevated alkane concentrations, which scale linearly with the amount of mineral dust within the ice samples. The alkane production happens during the melt extraction step of the classic wet-extraction technique and reaches 14 to 91 ppb of CH4 excess in dusty ice samples. We document for the first time a co-production of excess methane, ethane, and propane, with the observed concentrations for ethane and propane exceeding their past atmospheric background at least by a factor of 10. Independent of the produced amounts, excess alkanes were produced in a fixed molar ratio of approximately 14:2:1, indicating a shared origin. The measured carbon isotopic signature of excess methane is (-47.0±2.9) ‰ and its deuterium isotopic signature is (-326±57) ‰. With the co-production ratios of excess alkanes and the isotopic composition of excess methane we established a fingerprint that allows us to constrain potential formation processes. This fingerprint is not in line with a microbial origin. Moreover, an adsorption–desorption process of thermogenic gas on dust particles transported to Greenland does not appear very likely. Instead, the alkane pattern appears to be indicative of abiotic decomposition of organic matter as found in soils and plant leaves.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1814-9324
1814-9332
Relation: https://cp.copernicus.org/articles/19/999/2023/cp-19-999-2023.pdf; https://doaj.org/toc/1814-9324; https://doaj.org/toc/1814-9332
DOI: 10.5194/cp-19-999-2023
URL الوصول: https://doaj.org/article/92dccacfa9524de9bf6bad049c223f44
رقم الأكسشن: edsdoj.92dccacfa9524de9bf6bad049c223f44
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:18149324
18149332
DOI:10.5194/cp-19-999-2023