دورية أكاديمية

Modeling CICR in rat ventricular myocytes: voltage clamp studies.

التفاصيل البيبلوغرافية
العنوان: Modeling CICR in rat ventricular myocytes: voltage clamp studies.
المؤلفون: Krishna A; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA. jwc@rice.edu, Sun L, Valderrábano M, Palade PT, Clark JW Jr
المصدر: Theoretical biology & medical modelling [Theor Biol Med Model] 2010 Nov 10; Vol. 7, pp. 43. Date of Electronic Publication: 2010 Nov 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101224383 Publication Model: Electronic Cited Medium: Internet ISSN: 1742-4682 (Electronic) Linking ISSN: 17424682 NLM ISO Abbreviation: Theor Biol Med Model Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : BioMed Central, 2004-2021
مواضيع طبية MeSH: Models, Biological*, Calcium/*metabolism , Heart Ventricles/*cytology , Myocytes, Cardiac/*metabolism, Animals ; Caffeine/pharmacology ; Calcineurin/metabolism ; Calcium Channels/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism ; Calmodulin/metabolism ; Cell Compartmentation/drug effects ; Cell Membrane/drug effects ; Cell Membrane/metabolism ; Cytosol/drug effects ; Cytosol/metabolism ; Ion Channel Gating/drug effects ; Ion Transport/drug effects ; Kinetics ; Male ; Myocytes, Cardiac/cytology ; Myocytes, Cardiac/drug effects ; Patch-Clamp Techniques ; Protein Binding/drug effects ; Rats ; Rats, Sprague-Dawley ; Ryanodine Receptor Calcium Release Channel/metabolism ; Sarcoplasmic Reticulum/drug effects ; Sarcoplasmic Reticulum/metabolism ; Thapsigargin/pharmacology
مستخلص: Background: The past thirty-five years have seen an intense search for the molecular mechanisms underlying calcium-induced calcium-release (CICR) in cardiac myocytes, with voltage clamp (VC) studies being the leading tool employed. Several VC protocols including lowering of extracellular calcium to affect Ca²(+) loading of the sarcoplasmic reticulum (SR), and administration of blockers caffeine and thapsigargin have been utilized to probe the phenomena surrounding SR Ca²(+) release. Here, we develop a deterministic mathematical model of a rat ventricular myocyte under VC conditions, to better understand mechanisms underlying the response of an isolated cell to calcium perturbation. Motivation for the study was to pinpoint key control variables influencing CICR and examine the role of CICR in the context of a physiological control system regulating cytosolic Ca²(+) concentration ([Ca²(+)](myo)).
Methods: The cell model consists of an electrical-equivalent model for the cell membrane and a fluid-compartment model describing the flux of ionic species between the extracellular and several intracellular compartments (cell cytosol, SR and the dyadic coupling unit (DCU), in which resides the mechanistic basis of CICR). The DCU is described as a controller-actuator mechanism, internally stabilized by negative feedback control of the unit's two diametrically-opposed Ca²(+) channels (trigger-channel and release-channel). It releases Ca²(+) flux into the cyto-plasm and is in turn enclosed within a negative feedback loop involving the SERCA pump, regulating[Ca²(+)](myo).
Results: Our model reproduces measured VC data published by several laboratories, and generates graded Ca²(+) release at high Ca²(+) gain in a homeostatically-controlled environment where [Ca²(+)](myo) is precisely regulated. We elucidate the importance of the DCU elements in this process, particularly the role of the ryanodine receptor in controlling SR Ca²(+) release, its activation by trigger Ca²(+), and its refractory characteristics mediated by the luminal SR Ca²(+) sensor. Proper functioning of the DCU, sodium-calcium exchangers and SERCA pump are important in achieving negative feedback control and hence Ca²(+) homeostasis.
Conclusions: We examine the role of the above Ca²(+) regulating mechanisms in handling various types of induced disturbances in Ca²(+) levels by quantifying cellular Ca²(+) balance. Our model provides biophysically-based explanations of phenomena associated with CICR generating useful and testable hypotheses.
References: J Physiol. 2005 Jun 1;565(Pt 2):441-7. (PMID: 15817631)
Am J Physiol. 1994 Sep;267(3 Pt 2):H982-93. (PMID: 8092302)
Circ Res. 2006 Sep 29;99(7):740-8. (PMID: 16946134)
J Biol Chem. 1999 Oct 1;274(40):28660-8. (PMID: 10497235)
Ann N Y Acad Sci. 1991;639:126-39. (PMID: 1785836)
J Physiol. 1999 May 1;516 ( Pt 3):769-80. (PMID: 10200424)
J Biol Chem. 1995 Dec 22;270(51):30787-96. (PMID: 8530521)
Nature. 2001 Mar 29;410(6828):592-6. (PMID: 11279498)
Physiol Rev. 2001 Oct;81(4):1791-826. (PMID: 11581502)
Can J Physiol Pharmacol. 1999 May;77(5):339-49. (PMID: 10535683)
J Physiol. 1988 Nov;405:233-55. (PMID: 2475607)
Pflugers Arch. 1989 Oct;415(1):1-11. (PMID: 2560160)
Philos Trans A Math Phys Eng Sci. 2009 Jun 13;367(1896):2181-202. (PMID: 19414452)
J Gen Physiol. 1999 Feb;113(2):177-86. (PMID: 9925817)
Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):121-5. (PMID: 7816800)
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1263-73. (PMID: 19700627)
Am J Physiol. 1995 Feb;268(2 Pt 2):H703-12. (PMID: 7864197)
Science. 1995 May 19;268(5213):1045-9. (PMID: 7754384)
J Membr Biol. 1992 Jul;129(1):49-57. (PMID: 1404340)
Biophys J. 2000 Jan;78(1):334-43. (PMID: 10620297)
J Physiol. 1997 May 15;501 ( Pt 1):17-31. (PMID: 9174990)
Science. 1987 Dec 4;238(4832):1419-23. (PMID: 2446391)
Biophys J. 1999 Oct;77(4):1871-84. (PMID: 10512809)
Biochim Biophys Acta. 1988 Aug 18;943(2):256-66. (PMID: 3401480)
Biophys J. 2003 Dec;85(6):3666-86. (PMID: 14645059)
Biophys J. 2002 Dec;83(6):2918-45. (PMID: 12496068)
J Physiol. 1998 Mar 15;507 ( Pt 3):667-77. (PMID: 9508828)
Physiol Rev. 1997 Jul;77(3):699-729. (PMID: 9234963)
J Physiol. 1982 Aug;329:589-614. (PMID: 6292410)
J Physiol. 1979 Sep;294:279-301. (PMID: 512947)
Biophys J. 2004 Nov;87(5):3351-71. (PMID: 15347581)
J Biol Chem. 2008 Sep 12;283(37):25524-25532. (PMID: 18622016)
Proc R Soc Lond B Biol Sci. 1987 Mar 23;230(1259):163-205. (PMID: 2884668)
J Clin Invest. 2006 Sep;116(9):2510-20. (PMID: 16932808)
Am J Physiol. 1996 Jan;270(1 Pt 1):C148-59. (PMID: 8772440)
Biophys J. 2004 Apr;86(4):2121-8. (PMID: 15041652)
Am J Physiol. 1996 Oct;271(4 Pt 2):H1666-96. (PMID: 8897964)
Biophys J. 2006 Jan 1;90(1):77-91. (PMID: 16214852)
Circ Res. 1994 Jun;74(6):1071-96. (PMID: 7514509)
Biophys J. 1992 Aug;63(2):497-517. (PMID: 1330031)
J Physiol. 1997 Aug 1;502 ( Pt 3):471-9. (PMID: 9279801)
J Gen Physiol. 2001 Feb;117(2):119-31. (PMID: 11158165)
J Physiol. 1996 Jul 1;494 ( Pt 1):141-53. (PMID: 8814612)
J Gen Physiol. 1997 Oct;110(4):415-40. (PMID: 9379173)
J Physiol. 1987 Mar;384:199-222. (PMID: 2443659)
Science. 1990 Apr 20;248(4953):376-8. (PMID: 2158147)
Biochem J. 2004 Jan 15;377(Pt 2):357-66. (PMID: 14556649)
Science. 1993 Oct 29;262(5134):740-4. (PMID: 8235594)
Circ Res. 2009 Jul 2;105(1):51-60. (PMID: 19478199)
J Mol Cell Cardiol. 2004 Aug;37(2):417-29. (PMID: 15276012)
Philos Trans A Math Phys Eng Sci. 2006 May 15;364(1842):1187-206. (PMID: 16608703)
J Biol Chem. 2000 Jun 9;275(23):17639-46. (PMID: 10748065)
Biophys J. 2004 Dec;87(6):3723-36. (PMID: 15465866)
J Gen Physiol. 1999 Mar;113(3):469-89. (PMID: 10051521)
Biophys J. 1998 Jul;75(1):15-32. (PMID: 9649364)
Circ Res. 2003 May 2;92(8):904-11. (PMID: 12676813)
J Physiol. 1998 Apr 1;508 ( Pt 1):145-52. (PMID: 9490830)
J Cell Biol. 2005 Nov 7;171(3):537-47. (PMID: 16275756)
J Biol Chem. 1992 Jul 15;267(20):14483-9. (PMID: 1385815)
J Biol Chem. 1988 Jan 25;263(3):1376-81. (PMID: 3335548)
J Physiol. 1991 Jan;432:283-312. (PMID: 1653321)
Pflugers Arch. 1975 Apr 2;355(4):281-90. (PMID: 1239718)
Biophys J. 2009 Mar 4;96(5):1770-85. (PMID: 19254537)
J Cardiovasc Pharmacol. 2009 Sep;54(3):180-7. (PMID: 19333131)
J Physiol. 1985 Jul;364:395-411. (PMID: 2411919)
Biophys J. 1996 Mar;70(3):1169-82. (PMID: 8785276)
Ann N Y Acad Sci. 2006 Oct;1080:362-75. (PMID: 17132795)
Circ Res. 2008 Oct 10;103(8):e105-15. (PMID: 18787194)
Biochim Biophys Acta. 1994 Jun 30;1222(2):164-70. (PMID: 8031852)
Biophys J. 1996 Dec;71(6):2996-3012. (PMID: 8968571)
Biophys J. 1984 May;45(5):913-25. (PMID: 6733242)
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1576-7. (PMID: 19749162)
Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):136-50. (PMID: 16321427)
J Cell Biol. 1995 May;129(3):659-71. (PMID: 7730402)
Circ Res. 2004 Mar 19;94(5):650-6. (PMID: 14752033)
Physiol Rev. 2002 Oct;82(4):893-922. (PMID: 12270947)
J Gen Physiol. 1996 Nov;108(5):435-54. (PMID: 8923268)
Biophys J. 1993 Aug;65(2):865-81. (PMID: 8218910)
Cell Calcium. 2000 Oct;28(4):269-76. (PMID: 11032782)
Biophys J. 2002 Jul;83(1):59-78. (PMID: 12080100)
Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4176-81. (PMID: 9108125)
Circ Res. 2001 Apr 27;88(8):794-801. (PMID: 11325871)
Circ Res. 2006 Aug 4;99(3):223-4. (PMID: 16888244)
Am J Physiol. 1999 Aug;277(2):H603-9. (PMID: 10444485)
Annu Rev Physiol. 1994;56:485-508. (PMID: 7516645)
Cell Calcium. 2005 Sep-Oct;38(3-4):391-6. (PMID: 16139353)
Biophys Chem. 1998 May 5;72(1-2):87-100. (PMID: 9652087)
Prog Biophys Mol Biol. 2004 May;85(1):33-69. (PMID: 15050380)
Biochemistry. 1989 Aug 8;28(16):6764-71. (PMID: 2790030)
Biophys J. 1999 Sep;77(3):1528-39. (PMID: 10465763)
Prog Biophys Mol Biol. 2006 Jan-Apr;90(1-3):104-17. (PMID: 16038964)
Circ Res. 1987 Jul;61(1):148-54. (PMID: 2440616)
Eur J Pharmacol. 1979 May 1;55(3):281-92. (PMID: 222599)
Biophys J. 1984 Nov;46(5):549-58. (PMID: 6093904)
Ann N Y Acad Sci. 2007 Mar;1099:215-20. (PMID: 17446461)
J Physiol. 1975 Aug;249(3):469-95. (PMID: 809571)
Pharmacol Rev. 1997 Mar;49(1):1-51. (PMID: 9085308)
J Physiol. 2000 Nov 15;529 Pt 1:139-58. (PMID: 11080258)
J Physiol. 1997 May 15;501 ( Pt 1):3-16. (PMID: 9174989)
Circ Res. 2003 Sep 19;93(6):487-90. (PMID: 14500331)
Circ Res. 2006 Aug 18;99(4):398-406. (PMID: 16840718)
J Physiol. 2007 Aug 15;583(Pt 1):71-80. (PMID: 17569730)
J Physiol. 1968 May;196(1):183-221. (PMID: 5653884)
Am J Physiol Cell Physiol. 2002 Nov;283(5):C1511-21. (PMID: 12372812)
J Biol Chem. 1983 Jun 25;258(12):7305-10. (PMID: 6223026)
Science. 1993 May 7;260(5109):807-9. (PMID: 8387229)
Biophys J. 2008 Nov 15;95(10):4597-612. (PMID: 18689454)
J Physiol. 1994 Feb 1;474(3):463-71. (PMID: 8014907)
J Biol Chem. 1993 Apr 25;268(12):8394-7. (PMID: 8386159)
Circ Res. 2007 Sep 14;101(6):590-7. (PMID: 17641229)
J Biol Chem. 1997 Sep 12;272(37):23389-97. (PMID: 9287354)
Trends Pharmacol Sci. 2003 Apr;24(4):167-71. (PMID: 12707002)
J Physiol. 1995 Aug 1;486 ( Pt 3):581-91. (PMID: 7473221)
Sci STKE. 2003 Apr 08;2003(177):PE13. (PMID: 12684526)
Biophys J. 1996 Dec;71(6):3477-87. (PMID: 8968617)
Biophys J. 2003 Nov;85(5):3388-96. (PMID: 14581240)
المشرفين على المادة: 0 (Calcium Channels)
0 (Calmodulin)
0 (Ryanodine Receptor Calcium Release Channel)
3G6A5W338E (Caffeine)
67526-95-8 (Thapsigargin)
EC 2.7.11.17 (Calcium-Calmodulin-Dependent Protein Kinase Type 2)
EC 3.1.3.16 (Calcineurin)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20101111 Date Completed: 20110610 Latest Revision: 20211020
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC3245510
DOI: 10.1186/1742-4682-7-43
PMID: 21062495
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4682
DOI:10.1186/1742-4682-7-43