دورية أكاديمية

Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.

التفاصيل البيبلوغرافية
العنوان: Step-wise loss of bacterial flagellar torsion confers progressive phagocytic evasion.
المؤلفون: Lovewell RR; Department of Microbiology and Immunology, Dartmouth Medical School, Lebanon, New Hampshire, United States of America., Collins RM, Acker JL, O'Toole GA, Wargo MJ, Berwin B
المصدر: PLoS pathogens [PLoS Pathog] 2011 Sep; Vol. 7 (9), pp. e1002253. Date of Electronic Publication: 2011 Sep 15.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101238921 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1553-7374 (Electronic) Linking ISSN: 15537366 NLM ISO Abbreviation: PLoS Pathog Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science, c2005-
مواضيع طبية MeSH: Phagocytosis*, Bacterial Proteins/*metabolism , Flagella/*physiology , Pseudomonas aeruginosa/*immunology , Pseudomonas aeruginosa/*pathogenicity, Animals ; Bacterial Proteins/genetics ; Bacterial Proteins/immunology ; Flagella/immunology ; Immunity, Innate ; Macrophages/immunology ; Macrophages/metabolism ; Mice ; Mice, Inbred C57BL ; Movement ; Pseudomonas aeruginosa/genetics ; Pseudomonas aeruginosa/physiology ; Torsion, Mechanical
مستخلص: Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.
References: J Bacteriol. 2008 Jul;190(13):4736-48. (PMID: 18456804)
Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3038-42. (PMID: 8464920)
Cell. 1998 Apr 3;93(1):17-20. (PMID: 9546387)
Nucleic Acids Res. 2003 Feb 15;31(4):e15. (PMID: 12582260)
J Bacteriol. 2009 Sep;191(18):5669-79. (PMID: 19592588)
Am J Clin Pathol. 2007 Jul;128(1):32-4. (PMID: 17580270)
Bioinformatics. 2005 Sep 15;21(18):3683-5. (PMID: 16076888)
J Bacteriol. 2004 Oct;186(19):6341-50. (PMID: 15375113)
Clin Microbiol Rev. 2002 Apr;15(2):194-222. (PMID: 11932230)
Infect Immun. 1998 Mar;66(3):1000-7. (PMID: 9488388)
J Biol Chem. 2004 Apr 30;279(18):18944-51. (PMID: 14976212)
Nature. 1996 Jan 18;379(6562):266-9. (PMID: 8538793)
Bioinformatics. 2003 Jan 22;19(2):185-93. (PMID: 12538238)
J Infect Dis. 1990 Jun;161(6):1231-6. (PMID: 1971653)
Optom Vis Sci. 2007 May;84(5):429-34. (PMID: 17502827)
J Bacteriol. 2002 Oct;184(20):5533-44. (PMID: 12270810)
Proc Natl Acad Sci U S A. 1990 Mar;87(5):1937-41. (PMID: 2408046)
Infect Immun. 1994 Feb;62(2):596-605. (PMID: 8300217)
Infect Immun. 1985 Nov;50(2):577-82. (PMID: 3932214)
Int Rev Cell Mol Biol. 2008;270:39-85. (PMID: 19081534)
Infect Immun. 1976 Jul;14(1):246-56. (PMID: 780274)
J Gen Microbiol. 1988 Jan;134(1):43-52. (PMID: 3141566)
Infect Immun. 1995 Nov;63(11):4519-23. (PMID: 7591095)
Mol Genet Genomics. 2011 Feb;285(2):163-74. (PMID: 21165649)
J Infect Dis. 2007 Jul 15;196(2):289-96. (PMID: 17570117)
Microbes Infect. 2000 Jul;2(9):1051-60. (PMID: 10967285)
Mol Microbiol. 2002 Apr;44(2):361-79. (PMID: 11972776)
Genome Biol. 2004;5(10):R80. (PMID: 15461798)
J Bacteriol. 1999 Mar;181(6):1927-30. (PMID: 10074090)
Appl Environ Microbiol. 1997 Nov;63(11):4543-51. (PMID: 9361441)
Mol Cell Biochem. 1995 Mar 23;144(2):131-9. (PMID: 7623784)
Cell. 2006 Feb 24;124(4):783-801. (PMID: 16497588)
J Bacteriol. 1999 Jun;181(11):3542-51. (PMID: 10348868)
J Infect Dis. 1983 May;147(5):864-72. (PMID: 6842021)
Infect Immun. 2010 Jul;78(7):2937-45. (PMID: 20457788)
J Bacteriol. 2000 Aug;182(15):4234-40. (PMID: 10894732)
Infect Immun. 1981 Jul;33(1):142-8. (PMID: 6790439)
Infect Immun. 1992 Sep;60(9):3918-20. (PMID: 1379992)
J Bacteriol. 2005 Jan;187(2):771-7. (PMID: 15629949)
Infect Immun. 1995 Aug;63(8):2818-25. (PMID: 7542632)
معلومات مُعتمدة: R01 AI067405 United States AI NIAID NIH HHS; P30 CA023108 United States CA NCI NIH HHS; T32 GM008704 United States GM NIGMS NIH HHS; GM008704 United States GM NIGMS NIH HHS; R01 AI083256 United States AI NIAID NIH HHS
المشرفين على المادة: 0 (Bacterial Proteins)
0 (MotA protein, Bacteria)
تواريخ الأحداث: Date Created: 20110928 Date Completed: 20120229 Latest Revision: 20211020
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC3174259
DOI: 10.1371/journal.ppat.1002253
PMID: 21949654
قاعدة البيانات: MEDLINE
الوصف
تدمد:1553-7374
DOI:10.1371/journal.ppat.1002253