دورية أكاديمية

Molecular typing of Coxiella burnetii from animal and environmental matrices during Q fever epidemics in the Netherlands.

التفاصيل البيبلوغرافية
العنوان: Molecular typing of Coxiella burnetii from animal and environmental matrices during Q fever epidemics in the Netherlands.
المؤلفون: de Bruin A; National Institute for Public Health and the Environment (RIVM), Centre for infectious Disease Control (Cib), Laboratory for Zoonoses and Environmental Microbiology (LZO), PO Box 1, Bilthoven, 3720, BA, the Netherlands. arnout.de.bruin@rivm.nl, van Alphen PT, van der Plaats RQ, de Heer LN, Reusken CB, van Rotterdam BJ, Janse I
المصدر: BMC veterinary research [BMC Vet Res] 2012 Sep 18; Vol. 8, pp. 165. Date of Electronic Publication: 2012 Sep 18.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101249759 Publication Model: Electronic Cited Medium: Internet ISSN: 1746-6148 (Electronic) Linking ISSN: 17466148 NLM ISO Abbreviation: BMC Vet Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: London : BioMed Central, 2005-
مواضيع طبية MeSH: Coxiella burnetii/*isolation & purification , Q Fever/*veterinary, Animals ; Coxiella burnetii/genetics ; Environmental Microbiology ; Genetic Markers ; Genetic Variation ; Genotype ; Goat Diseases/epidemiology ; Goat Diseases/microbiology ; Goats ; Humans ; Multilocus Sequence Typing/methods ; Netherlands/epidemiology ; Q Fever/epidemiology ; Q Fever/microbiology ; Rats ; Sheep ; Sheep Diseases/epidemiology ; Sheep Diseases/microbiology
مستخلص: Background: The bacterium Coxiella burnetii has caused unprecedented outbreaks of Q fever in the Netherlands between 2007 and 2010. Since 2007, over 4000 human cases have been reported, with 2354 cases in 2009 alone. Dairy goat farms were identified as most probable sources for emerging clusters of human Q fever cases in their vicinity. However, identifying individual farms as primary source for specific clusters of human cases remains a challenge, partly due to limited knowledge of the different C. burnetii strains circulating in livestock, the environment and humans.
Results: We used a multiplex multi-locus variable number of tandem repeats analysis (MLVA) assay to investigate the genotypic diversity of C. burnetii in different types of samples that were collected nationwide during the Dutch Q fever outbreaks between 2007 and 2010. Typing was performed on C. burnetii positive samples obtained from several independent studies investigating C. burnetii presence in animals and the environment. Six different genotypes were identified on 45 farm locations, based on sequence-confirmed estimates of repeat numbers of six MLVA markers. MLVA genotype A was observed on 38 of the 45 selected farm locations in animals and in environmental samples.
Conclusions: Sequence confirmation of the numbers of tandem repeats within each locus and consensus about repeat identification is essential for accurate MLVA typing of C. burnetii. MLVA genotype A is the most common genotype in animal samples obtained from goat, sheep, and rats, as well as in environmental samples such as (aerosolized) dust, which is considered to be the major transmission route from animals via the environment to humans. The finding of a single dominant MLVA genotype in patients, the environment, and livestock complicates accurate source-finding. Pinpointing individual sources in the Netherlands requires discrimination of genotypes at a higher resolution than attained by using MLVA, as it is likely that the dominant C. burnetii MLVA type will be detected on several farms and in different patients in a particular area of interest.
References: Epidemiol Infect. 2011 Jan;139(1):1-12. (PMID: 20920383)
Emerg Infect Dis. 2004 Jul;10(7):1264-9. (PMID: 15324547)
Appl Environ Microbiol. 2012 Mar;78(6):1652-7. (PMID: 22247143)
Nucleic Acids Res. 1999 Jan 15;27(2):573-80. (PMID: 9862982)
Vet Rec. 2011 Jan 22;168(3):79. (PMID: 21257587)
Epidemiol Infect. 2012 May;140(5):858-64. (PMID: 21835066)
Emerg Infect Dis. 2009 Apr;15(4):613-4. (PMID: 19331749)
Epidemiol Infect. 1998 Mar;120(2):157-64. (PMID: 9593485)
Int J Environ Health Res. 2011 Dec;21(6):441-51. (PMID: 21563011)
Appl Environ Microbiol. 2011 Sep;77(18):6516-23. (PMID: 21784920)
FEMS Microbiol Lett. 2006 Jan;254(2):268-74. (PMID: 16445755)
Science. 2010 Jan 15;327(5963):266-7. (PMID: 20075230)
BMC Infect Dis. 2010 Mar 16;10:69. (PMID: 20230650)
Euro Surveill. 2010 Mar 25;15(12):. (PMID: 20350500)
Emerg Infect Dis. 2011 Apr;17(4):668-75. (PMID: 21470457)
Ann N Y Acad Sci. 1990;590:504-13. (PMID: 2378472)
J Clin Microbiol. 2012 Mar;50(3):1076-8. (PMID: 22189106)
Appl Environ Microbiol. 2011 Mar;77(6):2051-7. (PMID: 21257816)
Epidemiol Infect. 2009 Sep;137(9):1283-94. (PMID: 19161644)
PLoS One. 2011;6(11):e26201. (PMID: 22073151)
Pol J Microbiol. 2009;58(1):9-13. (PMID: 19469280)
Prev Vet Med. 2011 Aug 1;101(1-2):124-30. (PMID: 21640416)
Emerg Infect Dis. 2005 Aug;11(8):1211-7. (PMID: 16102309)
BMC Microbiol. 2006 Apr 26;6:38. (PMID: 16640773)
المشرفين على المادة: 0 (Genetic Markers)
تواريخ الأحداث: Date Created: 20120920 Date Completed: 20130325 Latest Revision: 20211021
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC3514391
DOI: 10.1186/1746-6148-8-165
PMID: 22988998
قاعدة البيانات: MEDLINE
الوصف
تدمد:1746-6148
DOI:10.1186/1746-6148-8-165