دورية أكاديمية

To scavenge or not to scavenge, that is STILL the question.

التفاصيل البيبلوغرافية
العنوان: To scavenge or not to scavenge, that is STILL the question.
المؤلفون: Allan EG; Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK., Kander MC, Carmichael I, Garman EF
المصدر: Journal of synchrotron radiation [J Synchrotron Radiat] 2013 Jan; Vol. 20 (Pt 1), pp. 23-36. Date of Electronic Publication: 2012 Dec 05.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Wiley Online Library Country of Publication: United States NLM ID: 9888878 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-5775 (Electronic) Linking ISSN: 09090495 NLM ISO Abbreviation: J Synchrotron Radiat Subsets: MEDLINE
أسماء مطبوعة: Publication: [Malden, MA] : Wiley Online Library
Original Publication: Copenhagen : Wiley-Blackwell Munksgaard, c1994-
مواضيع طبية MeSH: Free Radical Scavengers/*chemistry , Proteins/*radiation effects, Animals ; Buffers ; Chickens ; Crystallization ; Crystallography, X-Ray ; Egg White/chemistry ; Informatics ; Muramidase/radiation effects ; Nitrates/chemistry ; Proteins/chemistry
مستخلص: An extensive radiation chemistry literature would suggest that the addition of certain radical scavengers might mitigate the effects of radiation damage during protein crystallography diffraction data collection. However, attempts to demonstrate and quantify such an amelioration and its dose dependence have not yielded consistent results, either at room temperature (RT) or 100 K. Here the information thus far available is summarized and reasons for this lack of quantitative success are identified. Firstly, several different metrics have been used to monitor and quantify the rate of damage, and, as shown here, these can give results which are in conflict regarding scavenger efficacy. In addition, significant variation in results from data collected from crystals treated in nominally the same way has been observed. Secondly, typical crystallization conditions contain substantial concentrations of chemical species which already interact strongly with some of the X-ray-induced radicals that the added scavengers are intended to intercept. These interactions are probed here by the complementary technique of on-line microspectrophotometry carried out on solutions and crystals held both at 100 K and RT, the latter enabled by the use of a beamline-mounted humidifying device. With the help of computational chemistry, attempts are made to assign some of the characteristic spectral features observed experimentally. A further source of uncertainty undoubtedly lies in the challenge of reliably measuring the parameters necessary for the accurate calculation of the absorbed dose (e.g. crystal size and shape, beam profile) and its distribution within the volume of the crystal (an issue addressed in detail in another article in this issue). While microspectrophotometry reveals that the production of various species can be quenched by the addition of scavengers, it is less clear that this observation can be translated into a significant gain in crystal dose tolerance for macromolecular crystallographers.
References: Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):72-82. (PMID: 16369096)
J Synchrotron Radiat. 2007 Jan;14(Pt 1):51-72. (PMID: 17211072)
J Synchrotron Radiat. 2007 Jan;14(Pt 1):73-83. (PMID: 17211073)
Structure. 2006 Jul;14(7):1099-105. (PMID: 16843891)
J Synchrotron Radiat. 2013 Jan;20(Pt 1):49-57. (PMID: 23254655)
J Synchrotron Radiat. 2007 Jan;14(Pt 1):24-33. (PMID: 17211069)
J Synchrotron Radiat. 2009 Mar;16(Pt 2):143-51. (PMID: 19240326)
Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):623-8. (PMID: 10639129)
Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):810-8. (PMID: 22751666)
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):125-32. (PMID: 20124692)
J Synchrotron Radiat. 2009 Mar;16(Pt 2):163-72. (PMID: 19240328)
Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8. (PMID: 16929104)
J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):355-60. (PMID: 12409622)
Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):96-101. (PMID: 16369098)
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):235-42. (PMID: 21460441)
Nature. 1987 Dec 24-31;330(6150):772-3. (PMID: 2827033)
Structure. 2000 Mar 15;8(3):315-28. (PMID: 10745008)
J Synchrotron Radiat. 2011 May;18(Pt 3):346-57. (PMID: 21525642)
Acta Crystallogr D Biol Crystallogr. 2009 Sep;65(Pt 9):1004-6. (PMID: 19690379)
Radiat Res. 2011 Jul;176(1):128-33. (PMID: 21631291)
J Synchrotron Radiat. 2009 Mar;16(Pt 2):191-204. (PMID: 19240331)
J Mol Biol. 1975 Nov 5;98(3):479-84. (PMID: 1195395)
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7. (PMID: 16549763)
Acta Crystallogr D Biol Crystallogr. 2009 Dec;65(Pt 12):1237-46. (PMID: 19966409)
J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):347-54. (PMID: 12409621)
J Synchrotron Radiat. 2009 Mar;16(Pt 2):205-16. (PMID: 19240332)
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51. (PMID: 20382986)
J Synchrotron Radiat. 2005 May;12(Pt 3):257-60. (PMID: 15840908)
Nature. 1974 Oct 11;251(5475):551-2. (PMID: 4422113)
J Synchrotron Radiat. 2009 Mar;16(Pt 2):152-62. (PMID: 19240327)
Acta Crystallogr D Biol Crystallogr. 2000 Mar;56(Pt 3):328-41. (PMID: 10713520)
Acta Crystallogr D Biol Crystallogr. 2011 Oct;67(Pt 10):881-93. (PMID: 21931220)
J Synchrotron Radiat. 2011 May;18(Pt 3):387-97. (PMID: 21525647)
Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16247-52. (PMID: 21918110)
معلومات مُعتمدة: United Kingdom WT_ Wellcome Trust; 088287/Z/09/Z United Kingdom WT_ Wellcome Trust
المشرفين على المادة: 0 (Buffers)
0 (Free Radical Scavengers)
0 (Nitrates)
0 (Proteins)
EC 3.2.1.17 (Muramidase)
تواريخ الأحداث: Date Created: 20121221 Date Completed: 20130613 Latest Revision: 20240518
رمز التحديث: 20240518
مُعرف محوري في PubMed: PMC3526919
DOI: 10.1107/S0909049512046237
PMID: 23254653
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-5775
DOI:10.1107/S0909049512046237