دورية أكاديمية

Evaporative cooling of the dipolar hydroxyl radical.

التفاصيل البيبلوغرافية
العنوان: Evaporative cooling of the dipolar hydroxyl radical.
المؤلفون: Stuhl BK; JILA, National Institute of Standards and Technology and University of Colorado, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA., Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J
المصدر: Nature [Nature] 2012 Dec 20; Vol. 492 (7429), pp. 396-400.
نوع المنشور: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مستخلص: Atomic physics was revolutionized by the development of forced evaporative cooling, which led directly to the observation of Bose-Einstein condensation, quantum-degenerate Fermi gases and ultracold optical lattice simulations of condensed-matter phenomena. More recently, substantial progress has been made in the production of cold molecular gases. Their permanent electric dipole moment is expected to generate systems with varied and controllable phases, dynamics and chemistry. However, although advances have been made in both direct cooling and cold-association techniques, evaporative cooling has not been achieved so far. This is due to unfavourable ratios of elastic to inelastic scattering and impractically slow thermalization rates in the available trapped species. Here we report the observation of microwave-forced evaporative cooling of neutral hydroxyl (OH(•)) molecules loaded from a Stark-decelerated beam into an extremely high-gradient magnetic quadrupole trap. We demonstrate cooling by at least one order of magnitude in temperature, and a corresponding increase in phase-space density by three orders of magnitude, limited only by the low-temperature sensitivity of our spectroscopic thermometry technique. With evaporative cooling and a sufficiently large initial population, much colder temperatures are possible; even a quantum-degenerate gas of this dipolar radical (or anything else it can sympathetically cool) may be within reach.
التعليقات: Comment in: Nature. 2012 Dec 20;492(7429):364-5. (PMID: 23257877)
References: Phys Rev Lett. 1995 Nov 27;75(22):3969-3973. (PMID: 10059782)
Science. 2008 Oct 10;322(5899):231-5. (PMID: 18801969)
Phys Rev Lett. 2008 Nov 14;101(20):203203. (PMID: 19113337)
Phys Rev Lett. 2003 Dec 12;91(24):243001. (PMID: 14683112)
Phys Rev Lett. 2006 May 19;96(19):190401. (PMID: 16803088)
Science. 1995 Jul 14;269(5221):198-201. (PMID: 17789847)
Chem Rev. 2012 Sep 12;112(9):4949-5011. (PMID: 22921011)
Science. 2010 Feb 12;327(5967):853-7. (PMID: 20150499)
Phys Rev Lett. 2008 Feb 8;100(5):050402. (PMID: 18352346)
Phys Rev Lett. 2011 Sep 9;107(11):115301. (PMID: 22026682)
J Chem Phys. 2012 Jul 14;137(2):024103. (PMID: 22803524)
Phys Rev Lett. 2006 Nov 3;97(18):183201. (PMID: 17155539)
Phys Rev Lett. 2011 May 13;106(19):193201. (PMID: 21668156)
Science. 2010 Jul 30;329(5991):547-50. (PMID: 20558666)
Nature. 2010 Apr 29;464(7293):1324-8. (PMID: 20428166)
Science. 1999 Sep 10;285(5434):1703-6. (PMID: 10481000)
Phys Rev Lett. 2009 Jan 9;102(1):013003. (PMID: 19257187)
Phys Rev Lett. 2009 Sep 4;103(10):103005. (PMID: 19792304)
Phys Rev Lett. 2007 Feb 9;98(6):060404. (PMID: 17358920)
تواريخ الأحداث: Date Created: 20121222 Date Completed: 20130212 Latest Revision: 20221222
رمز التحديث: 20240628
DOI: 10.1038/nature11718
PMID: 23257881
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/nature11718