دورية أكاديمية

Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: a coupled electromechanical modeling study.

التفاصيل البيبلوغرافية
العنوان: Rate-dependent Ca2+ signalling underlying the force-frequency response in rat ventricular myocytes: a coupled electromechanical modeling study.
المؤلفون: Krishna A; Department of Electrical and Computer Engineering, Rice University, Houston, Texas, USA. jwc@rice.edu., Valderrábano M, Palade PT, Clark JW Jr
المصدر: Theoretical biology & medical modelling [Theor Biol Med Model] 2013 Sep 10; Vol. 10, pp. 54. Date of Electronic Publication: 2013 Sep 10.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: BioMed Central Country of Publication: England NLM ID: 101224383 Publication Model: Electronic Cited Medium: Internet ISSN: 1742-4682 (Electronic) Linking ISSN: 17424682 NLM ISO Abbreviation: Theor Biol Med Model Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : BioMed Central, 2004-2021
مواضيع طبية MeSH: Calcium Signaling*/drug effects , Electrophysiological Phenomena*/drug effects, Heart Ventricles/*cytology , Myocytes, Cardiac/*physiology, Animals ; Biomechanical Phenomena/drug effects ; Calcineurin/metabolism ; Calcium/metabolism ; Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism ; Calmodulin/metabolism ; Cyclic AMP/metabolism ; Cyclic GMP/metabolism ; Dihydropyridines/pharmacology ; Intracellular Space/drug effects ; Intracellular Space/metabolism ; Kinetics ; Models, Biological ; Myocardial Contraction/drug effects ; Myocytes, Cardiac/drug effects ; Rats ; Receptors, Adrenergic, beta/metabolism ; Ryanodine Receptor Calcium Release Channel/metabolism ; Sarcomeres/drug effects ; Sarcomeres/metabolism ; Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism ; Signal Transduction/drug effects
مستخلص: Background: Rate-dependent effects on the Ca2+ sub-system in a rat ventricular myocyte are investigated. Here, we employ a deterministic mathematical model describing various Ca2+ signalling pathways under voltage clamp (VC) conditions, to better understand the important role of calmodulin (CaM) in modulating the key control variables Ca2+/calmodulin-dependent protein kinase-II (CaMKII), calcineurin (CaN), and cyclic adenosine monophosphate (cAMP) as they affect various intracellular targets. In particular, we study the frequency dependence of the peak force generated by the myofilaments, the force-frequency response (FFR).
Methods: Our cell model incorporates frequency-dependent CaM-mediated spatially heterogenous interaction of CaMKII and CaN with their principal targets (dihydropyridine (DHPR) and ryanodine (RyR) receptors and the SERCA pump). It also accounts for the rate-dependent effects of phospholamban (PLB) on the SERCA pump; the rate-dependent role of cAMP in up-regulation of the L-type Ca2+ channel (ICa,L); and the enhancement in SERCA pump activity via phosphorylation of PLB.
Results: Our model reproduces positive peak FFR observed in rat ventricular myocytes during voltage-clamp studies both in the presence/absence of cAMP mediated β-adrenergic stimulation. This study provides quantitative insight into the rate-dependence of Ca2+-induced Ca2+-release (CICR) by investigating the frequency-dependence of the trigger current (ICa,L) and RyR-release. It also highlights the relative role of the sodium-calcium exchanger (NCX) and the SERCA pump at higher frequencies, as well as the rate-dependence of sarcoplasmic reticulum (SR) Ca2+ content. A rigorous Ca2+ balance imposed on our investigation of these Ca2+ signalling pathways clarifies their individual roles. Here, we present a coupled electromechanical study emphasizing the rate-dependence of isometric force developed and also investigate the temperature-dependence of FFR.
Conclusions: Our model provides mechanistic biophysically based explanations for the rate-dependence of CICR, generating useful and testable hypotheses. Although rat ventricular myocytes exhibit a positive peak FFR in the presence/absence of beta-adrenergic stimulation, they show a characteristic increase in the positive slope in FFR due to the presence of Norepinephrine or Isoproterenol. Our study identifies cAMP-mediated stimulation, and rate-dependent CaMKII-mediated up-regulation of ICa,L as the key mechanisms underlying the aforementioned positive FFR.
References: Am J Physiol. 1999 Jun;276(6):H2221-44. (PMID: 10362707)
Am J Physiol Cell Physiol. 2006 Feb;290(2):C601-8. (PMID: 16207789)
J Comp Physiol B. 2009 May;179(4):469-79. (PMID: 19123061)
Pflugers Arch. 2000 Apr;439(6):822-8. (PMID: 10784358)
J Gen Physiol. 1985 Nov;86(5):637-51. (PMID: 4067571)
Am J Physiol. 1999 Jan;276(1):H9-H18. (PMID: 9887011)
Am J Physiol. 1990 Sep;259(3 Pt 2):H951-61. (PMID: 2168683)
J Physiol. 1994 Jun 1;477(Pt 2):237-51. (PMID: 7932216)
Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1263-73. (PMID: 19700627)
Am J Physiol. 1995 Feb;268(2 Pt 2):H703-12. (PMID: 7864197)
J Biol Chem. 2003 Oct 3;278(40):38593-600. (PMID: 14514795)
Theor Biol Med Model. 2010 Nov 10;7:43. (PMID: 21062495)
Biophys J. 1985 Sep;48(3):485-98. (PMID: 2412607)
J Physiol. 1997 May 15;501 ( Pt 1):17-31. (PMID: 9174990)
J Mol Cell Cardiol. 2002 Aug;34(8):975-84. (PMID: 12234767)
Biophys J. 1992 Aug;63(2):497-517. (PMID: 1330031)
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1741-9. (PMID: 20852049)
J Biol Chem. 1996 Jun 14;271(24):14206-13. (PMID: 8662932)
Cell Calcium. 2007 Apr;41(4):353-64. (PMID: 16999996)
Basic Res Cardiol. 1980 Jul-Aug;75(4):515-25. (PMID: 7436995)
Drug Saf. 2003;26(2):65-79. (PMID: 12534324)
Biochem J. 2004 Jan 15;377(Pt 2):357-66. (PMID: 14556649)
J Mol Cell Cardiol. 1999 Mar;31(3):479-91. (PMID: 10198180)
Cardiovasc Res. 2003 Jul 1;59(1):37-45. (PMID: 12829174)
Circ Res. 2007 Feb 16;100(3):399-407. (PMID: 17234969)
Circ Res. 2009 Jul 2;105(1):51-60. (PMID: 19478199)
Basic Res Cardiol. 1998;93 Suppl 1:51-9. (PMID: 9833131)
J Physiol. 2006 Jul 15;574(Pt 2):509-18. (PMID: 16627565)
Biophys J. 1998 Jul;75(1):15-32. (PMID: 9649364)
Circ Res. 2003 May 2;92(8):904-11. (PMID: 12676813)
Cardiovasc Res. 2007 Mar 1;73(4):631-40. (PMID: 17157285)
J Biol Chem. 2005 May 13;280(19):18881-90. (PMID: 15728587)
J Cell Biol. 2005 Nov 7;171(3):537-47. (PMID: 16275756)
J Biol Chem. 2001 Aug 17;276(33):30794-802. (PMID: 11408490)
J Mol Cell Cardiol. 1997 Mar;29(3):977-89. (PMID: 9152859)
Am J Physiol Heart Circ Physiol. 2011 Oct;301(4):H1570-8. (PMID: 21765055)
J Physiol. 1995 Sep 15;487 ( Pt 3):609-22. (PMID: 8544125)
J Physiol. 1993 Aug;468:35-52. (PMID: 8254514)
Cardiovasc Res. 2002 Apr;54(1):105-16. (PMID: 12062367)
Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1576-7. (PMID: 19749162)
J Mol Cell Cardiol. 1991 Sep;23(9):1039-50. (PMID: 1658347)
Am J Physiol Heart Circ Physiol. 2002 Feb;282(2):H499-507. (PMID: 11788397)
J Biol Chem. 2001 Jun 8;276(23):20144-53. (PMID: 11274202)
J Physiol. 2004 Jan 15;554(Pt 2):309-20. (PMID: 14565991)
J Mol Cell Cardiol. 1999 Dec;31(12):2077-85. (PMID: 10640437)
J Neurosci. 1997 Sep 15;17(18):6961-73. (PMID: 9278532)
Trends Cardiovasc Med. 2002 Jan;12(1):32-7. (PMID: 11796242)
Am J Physiol. 1994 Sep;267(3 Pt 2):H982-93. (PMID: 8092302)
Am J Physiol. 1975 Aug;229(2):355-64. (PMID: 126022)
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H2092-7. (PMID: 16603708)
J Mol Cell Cardiol. 2007 Jan;42(1):196-205. (PMID: 17052727)
Biophys J. 2008 Sep;95(5):2368-90. (PMID: 18234826)
Am J Physiol Heart Circ Physiol. 2010 Oct;299(4):H1092-9. (PMID: 20656885)
J Mol Cell Cardiol. 2002 Mar;34(3):321-34. (PMID: 11945024)
Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H886-97. (PMID: 15833804)
Science. 2004 Apr 16;304(5669):432-5. (PMID: 15087548)
J Biol Chem. 1995 Feb 3;270(5):2074-81. (PMID: 7836435)
Biochem J. 2000 Nov 15;352 Pt 1:61-70. (PMID: 11062058)
J Gen Physiol. 1996 Jan;107(1):1-18. (PMID: 8741727)
J Mol Cell Cardiol. 2000 Dec;32(12):2249-58. (PMID: 11113000)
Acta Pharm Hung. 1999 Nov;69(5):247-57. (PMID: 10652792)
J Mol Cell Cardiol. 2007 Jan;42(1):247-59. (PMID: 17081561)
Circ Res. 2003 May 2;92(8):912-9. (PMID: 12676814)
J Mol Cell Cardiol. 1990 Jan;22(1):99-110. (PMID: 1691300)
J Biol Chem. 1991 Jun 15;266(17):11144-52. (PMID: 1645727)
Proc Natl Acad Sci U S A. 1990 Jan;87(2):753-7. (PMID: 1689051)
J Physiol. 1975 Aug;249(3):469-95. (PMID: 809571)
Circ Res. 2006 Aug 18;99(4):398-406. (PMID: 16840718)
Am J Physiol. 1999 Jan;276(1):H141-8. (PMID: 9887027)
J Biol Chem. 1994 Oct 21;269(42):26492-6. (PMID: 7929371)
Circ Res. 2004 Apr 2;94(6):e61-70. (PMID: 15016728)
Circulation. 2004 Nov 16;110(20):3168-74. (PMID: 15505083)
Jpn Circ J. 1996 Aug;60(8):593-603. (PMID: 8889662)
Eur J Pharmacol. 1995 Oct 16;285(2):217-20. (PMID: 8566143)
Biophys J. 2008 Nov 15;95(10):4597-612. (PMID: 18689454)
J Mol Cell Cardiol. 2007 Mar;42(3):590-9. (PMID: 17239900)
Basic Res Cardiol. 2002 Mar;97(2):137-44. (PMID: 12002261)
J Biol Chem. 1993 Apr 25;268(12):8394-7. (PMID: 8386159)
Acta Physiol Scand. 1992 Aug;145(4):311-21. (PMID: 1529721)
Trends Pharmacol Sci. 2003 Apr;24(4):167-71. (PMID: 12707002)
Circulation. 1993 Nov;88(5 Pt 1):2267-76. (PMID: 8222121)
المشرفين على المادة: 0 (Calmodulin)
0 (Dihydropyridines)
0 (Receptors, Adrenergic, beta)
0 (Ryanodine Receptor Calcium Release Channel)
7M8K3P6I89 (1,4-dihydropyridine)
E0399OZS9N (Cyclic AMP)
EC 2.7.11.17 (Calcium-Calmodulin-Dependent Protein Kinase Type 2)
EC 3.1.3.16 (Calcineurin)
EC 3.6.3.8 (Sarcoplasmic Reticulum Calcium-Transporting ATPases)
H2D2X058MU (Cyclic GMP)
SY7Q814VUP (Calcium)
تواريخ الأحداث: Date Created: 20130912 Date Completed: 20140618 Latest Revision: 20240321
رمز التحديث: 20240321
مُعرف محوري في PubMed: PMC3848742
DOI: 10.1186/1742-4682-10-54
PMID: 24020888
قاعدة البيانات: MEDLINE
الوصف
تدمد:1742-4682
DOI:10.1186/1742-4682-10-54