دورية أكاديمية

A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis.

التفاصيل البيبلوغرافية
العنوان: A miR169 isoform regulates specific NF-YA targets and root architecture in Arabidopsis.
المؤلفون: Sorin C; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France.; Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France., Declerck M; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France., Christ A; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France., Blein T; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France.; INRA, Institut JP Bourgin, Route de Saint-Cyr, 78026, Versailles Cedex, France., Ma L; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France., Lelandais-Brière C; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France.; Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France., Njo MF; Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.; Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium., Beeckman T; Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052, Ghent, Belgium.; Department Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium., Crespi M; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France., Hartmann C; Institut des Sciences du Végétal (ISV), CNRS, UPR2355, Saclay Plant Sciences, F-91198, Gif-sur-Yvette Cedex, France.; Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris Cedex 13, France.
المصدر: The New phytologist [New Phytol] 2014 Jun; Vol. 202 (4), pp. 1197-1211. Date of Electronic Publication: 2014 Feb 17.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of New Phytologist Trust Country of Publication: England NLM ID: 9882884 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8137 (Electronic) Linking ISSN: 0028646X NLM ISO Abbreviation: New Phytol Subsets: MEDLINE
أسماء مطبوعة: Publication: Oxford : Wiley on behalf of New Phytologist Trust
Original Publication: London, New York [etc.] Academic Press.
مواضيع طبية MeSH: Gene Expression Regulation, Plant*, Arabidopsis/*genetics , Arabidopsis Proteins/*genetics , CCAAT-Binding Factor/*genetics , MicroRNAs/*genetics, Arabidopsis/cytology ; Arabidopsis/growth & development ; Arabidopsis Proteins/metabolism ; CCAAT-Binding Factor/metabolism ; Gene Expression ; Genes, Reporter ; Meristem/cytology ; Meristem/genetics ; Meristem/growth & development ; MicroRNAs/metabolism ; Phenotype ; Plant Roots/cytology ; Plant Roots/genetics ; Plant Roots/growth & development ; Plants, Genetically Modified ; RNA Isoforms ; RNA, Plant/genetics ; RNA, Plant/metabolism
مستخلص: In plants, roots are essential for water and nutrient acquisition. MicroRNAs (miRNAs) regulate their target mRNAs by transcript cleavage and/or inhibition of protein translation and are known as major post-transcriptional regulators of various developmental pathways and stress responses. In Arabidopsis thaliana, four isoforms of miR169 are encoded by 14 different genes and target diverse mRNAs, encoding subunits A of the NF-Y transcription factor complex. These miRNA isoforms and their targets have previously been linked to nutrient signalling in plants. By using mimicry constructs against different isoforms of miR169 and miR-resistant versions of NF-YA genes we analysed the role of specific miR169 isoforms in root growth and branching. We identified a regulatory node involving the particular miR169defg isoform and NF-YA2 and NF-YA10 genes that acts in the control of primary root growth. The specific expression of MIM169defg constructs altered specific cell type numbers and dimensions in the root meristem. Preventing miR169defg-regulation of NF-YA2 indirectly affected laterial root initiation. We also showed that the miR169defg isoform affects NF-YA2 transcripts both at mRNA stability and translation levels. We propose that a specific miR169 isoform and the NF-YA2 target control root architecture in Arabidopsis.
(© 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.)
References: Axtell MJ. 2008. Evolution of microRNAs and their targets: are all microRNAs biologically relevant? Biochimica et Biophysica Acta 1779: 725-734.
Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.
Baxevanis AD, Arents G, Moudrianakis EN, Landsman D. 1995. A variety of DNA-binding and multimeric proteins contain the histone fold motif. Nucleic acids research 23: 2685-2691.
Bazin J, Khan G, Combier JP, Bustos-Sanmamed P, Debernardi JM, Rodriguez R, Sorin C, Palatnik J, Hartmann C, Crespi M et al. 2013. miR396 affects mycorrhization and root meristem activity in the legume Medicago truncatula. Plant Journal 74: 920-934.
Beeckman T, Engler G. 1994. An easy technique for the clearing of histochemically stained plant tissue. Plant Molecular Biology Reporter 12: 37-42.
Breakfield NW, Corcoran DL, Petricka JJ, Shen J, Sae-Seaw J, Rubio-Somoza I, Weigel D, Ohler U, Benfey PN. 2012. High-resolution experimental and computational profiling of tissue-specific known and novel miRNAs in Arabidopsis. Genome Research 22: 163-176.
Brodersen P, Voinnet O. 2009. Revisiting the principles of microRNA target recognition and mode of action. Nature Reviews Molecular Cell Biology 10: 141-148.
Buhtz A, Pieritz J, Springer F, Kehr J. 2010. Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biology 10: 64.
Cao S, Kumimoto RW, Siriwardana CL, Risinger JR, Holt BF. 2011. Identification and characterization of NF-Y transcription factor families in the monocot model plant Brachypodium distachyon. PLoS ONE 6: e21805.
Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S et al. 2010. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465: 316-321.
Ceribelli M, Dolfini D, Merico D, Gatta R, Viganò AM, Pavesi G, Mantovani R. 2008. The histone-like NF-Y is a bifunctional transcription factor. Molecular and Cellular Biology 28: 2047-2058.
Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic acids research 33: e179.
Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735-743.
Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M et al. 2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes & development 20: 3084-3088.
Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant physiology 139: 5.
De Smet I, Chaerle P, Vanneste S, De Rycke R, Inzé D, Beeckman T. 2004. An easy and versatile embedding method for transverse sections. Journal of microscopy 213: 76-80.
De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D et al. 2007. Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134: 681-690.
Des Marais DL, McKay JK, Richards JH, Sen S, Wayne T, Juenger TE. 2012. Physiological genomics of response to soil drying in diverse Arabidopsis accessions. The Plant Cell 24: 893-914.
Dolfini D, Gatta R, Mantovani R. 2012. NF-Y and the transcriptional activation of CCAAT promoters. Critical Reviews in Biochemistry and Molecular Biology 47: 29-49.
Donati G, Gatta R, Dolfini D, Fossati A, Ceribelli M, Mantovani R. 2008. An NF-Y-dependent switch of positive and negative histone methyl marks on CCAAT promoters. PLoS ONE 3: e2066.
Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL. 2000. Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant physiology 124: 1648-1657.
Dubrovsky JG, Forde BG. 2012. Quantitative analysis of lateral root development: pitfalls and how to avoid them. The Plant Cell 24: 4-14.
Dubrovsky JG, Rost TL, Colón-Carmona A, Doerner P. 2001. Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana. Planta 214: 30-36.
Edwards D, Murray JAH, Smith AG. 1998. Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant physiology 117: 1015-1022.
Elliott AR, Schen PM, Grof CPL. 2006. Quantitative analysis of GFP in plant extracts using The VersaFluor™ Fluorometer System. BIO-RAD tech note 2434. Brisbane, Australia: CSIRO Tropical Agriculture.
Fukaki H, Tameda S, Masuda H, Tasaka M. 2002. Lateral root formation is blocked by a gain of function mutation in the SOLITARY ROOT/IAA14 gene of Arabidopsis. Plant Journal 29: 153-168.
Gatta R, Mantovani R. 2011. NF-Y affects histone acetylation and H2A. Z deposition in cell cycle promoters. Epigenetics: Official Journal of the DNA Methylation Society 6: 526.
German MA, Pillay M, Jeong DH, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis LA, Nobuta K, German R et al. 2008. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotechnology 26: 941-946.
Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. 2012. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philosophical Transactions of the Royal Society of London B 367: 1461-1468.
Gonzalez-Ibeas D, Blanca J, Donaire L, Saladié M, Mascarell-Creus A, Cano-Delgado A, Garcia-Mas J, Llave C, Aranda M. 2011. Analysis of the melon (Cucumis melo) small RNAome by high-throughput pyrosequencing. BMC genomics 12: 393.
Gusmaroli G, Tonelli C, Mantovani R. 2001. Regulation of the CCAAT-Binding NF-Y subunits in Arabidopsis thaliana. Gene 264: 173-185.
Gusmaroli G, Tonelli C, Mantovani R. 2002. Regulation of novel members of the Arabidopsis thaliana CCAAT-binding nuclear factor Y subunits. Gene 283: 41-48.
Himanen K, Boucheron E, Vanneste S, de Almeida Engler J, Inzé D, Beeckman T. 2002. Auxin-mediated cell cycle activation during early lateral root initiation. The Plant Cell 14: 2339-2351.
Karimi M, Bleys A, Vanderhaeghen R, Hilson P. 2007. Building blocks for plant gene assembly. Plant physiology 145: 1183.
Kazan K. 2013. Auxin and the integration of environmental signals into plant root development. Annals of Botany 112: 1655-1665.
Khan G, Declerck M, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C. 2011. MicroRNAs as regulators of root development and architecture. Plant Molecular Biology 77: 47-58.
Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. 2013. CCAAT-box binding transcription factors in plants: Y so many? Trends in plant science 18: 157-166.
Lee H, Yoo SJ, Lee JH, Kim W, Yoo SK, Fitzgerald H, Carrington JC, Ahn JH. 2010. Genetic framework for flowering-time regulation by ambient temperature-responsive miRNAs in Arabidopsis. Nucleic acids research 38: 3081-3093.
Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thévenot P, Maurousset L et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 24: 272.
Leyva-González MA, Ibarra-Laclette E, Cruz-Ramírez A, Herrera-Estrella L. 2012. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLoS ONE 7: e48138.
Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant cell 20: 2238-2251.
Li Y, Fu Y, Ji L, Wu C, Zheng C. 2010. Characterization and expression analysis of the Arabidopsis mir169 family. Plant Science 178: 271-280.
Liang G, He H, Yu D. 2012. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7: e48951.
Licausi F, Weits DA, Pant BD, Scheible WR, Geigenberger P, Van Dongen JT. 2011. Hypoxia responsive gene expression is mediated by various subsets of transcription factors and miRNAs that are determined by the actual oxygen availability. New phytologist 190: 442-456.
Liu JX, Howell SH. 2010. bZIP28 and NF-Y transcription factors are activated by ER stress and assemble into a transcriptional complex to regulate stress response genes in Arabidopsis. The Plant cell 22: 782-796.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25: 402-408.
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ. 1998. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195-1205.
Malamy JE, Benfey PN. 1997. Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124: 33-44.
Mallory AC, Ely L, Smith TH, Marathe R, Anandalakshmi R, Fagard M, Vaucheret H, Pruss G, Bowman L, Vance VB. 2001. HC-Pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. The Plant Cell 13: 571-583.
Mantovani R. 1999. The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15-27.
Mantovani R, Li XY, Pessara U, van Huisjduijnen RH, Benoist C, Mathis D. 1994. Dominant negative analogs of NF-YA. Journal of Biological Chemistry 269: 20 340-20 346.
Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, Vaucheret H, Nussaume L, Crespi MD, Maizel A. 2010. miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. The Plant cell 22: 1104-1117.
Meng Y, Shao C, Ma X, Wang H, Chen M. 2012. Expression-based functional investigation of the organ-specific microRNAs in Arabidopsis. PLoS ONE 7: e50870.
Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. 2010. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329: 1306-1311.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarium 15: 473-497.
Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG. 2007. Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proceedings of the National Academy of Sciences, USA 104: 16 450.
Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V. 2005. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132: 603-614.
Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A. 2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic acids research 35: e60.
Pant BD, Musialak-Lange M, Nuc P, May P, Buhtz A, Kehr J, Walther D, Scheible WR. 2009. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant physiology 150: 1541-1555.
Patrick JW. 1997. PHLOEM UNLOADING: sieve element unloading and post-sieve element transport. Annual Review of Plant Physiology and Plant Molecular Biology 48: 191-222.
Perilli S, Sabatini S. 2010. Analysis of root meristem size development. Methods in Molecular Biology 655: 177-187.
Petricka JJ, Winter CM, Benfey PN. 2012. Control of Arabidopsis root development. Annual review of plant biology 63: 563-590.
Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, Holt BF, Mantovani R. 2012. The promiscuous life of plant NUCLEAR FACTOR Y transcription factors. The Plant Cell 24: 4777-4792.
R Development Core Team. 2012. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rajagopalan R, Vaucheret H, Trejo J, Bartel DP. 2006. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes & development 20: 3407-3425.
Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP. 2002. Prediction of plant microRNA targets. Cell 110: 513-520.
Roycewicz P, Malamy JE. 2012. Dissecting the effects of nitrate, sucrose and osmotic potential on Arabidopsis root and shoot system growth in laboratory assays. Philosophical Transactions of the Royal Society of London B 367: 1489-1500.
Schott G, Mari-Ordonez A, Himber C, Alioua A, Voinnet O, Dunoyer P. 2012. Differential effects of viral silencing suppressors on siRNA and miRNA loading support the existence of two distinct cellular pools of ARGONAUTE1. The EMBO journal 31: 2553-2565.
Siefers N, Dang KK, Kumimoto RW, Bynum WE IV, Tayrose G, Holt BF III. 2009. Tissue-specific expression patterns of Arabidopsis NF-Y transcription factors suggest potential for extensive combinatorial complexity. Plant physiology 149: 625-641.
Singh K, Talla A, Qiu W. 2012. Small RNA profiling of virus-infected grapevines: evidences for virus infection-associated and variety-specific miRNAs. Functional & integrative genomics 12: 659-669.
Sunkar R, Jagadeeswaran G. 2008. In silico identification of conserved microRNAs in large number of diverse plant species. BMC plant biology 8: 37.
Todesco M, Rubio-Somoza I, Paz-Ares J, Weigel D. 2010. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS genetics 6: e1001031.
Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthélémy J, Palauqui J-C. 2008. High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. The Plant Cell 20: 1494-1503.
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome biology 3: research0034.
Vanneste S, De Rybel B, Beemster GT, Ljung K, De Smet I, Van Isterdael G, Naudts M, Iida R, Gruissem W, Tasaka M et al. 2005. Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana. The Plant cell 17: 3035-3050.
Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP. 2007. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3: 12.
Voinnet O. 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136: 669-687.
Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, Anderson MB, Kaufman LS. 2007. The GCR1, GPA1, PRN1, NF-Y signal chain mediates both blue light and abscisic acid responses in Arabidopsis. Plant physiology 143: 1590-1600.
Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G. 2006. CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. The Plant Cell 18: 2971-2984.
Woo J, MacPherson CR, Liu J, Wang H, Kiba T, Hannah M, Wang XJ, Bajic VB, Chua N-H. 2012. The response and recovery of the Arabidopsis thaliana transcriptome to phosphate starvation. BMC plant biology 12: 62.
Zemzoumi K, Frontini M, Bellorini M, Mantovani R. 1999. NF-Y histone fold α1 helices help impart CCAAT specificity1. Journal of molecular biology 286: 327-337.
Zhao M, Ding H, Zhu JK, Zhang F, Li WX. 2011. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New phytologist 190: 906-915.
Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W. 2008. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica et Biophysica Acta 1779: 780-788.
فهرسة مساهمة: Keywords: Arabidopsis; Nuclear Factor Y subunit A (NF-YA); miR169 isoforms; mimicry; root branching
المشرفين على المادة: 0 (Arabidopsis Proteins)
0 (CCAAT-Binding Factor)
0 (MIRN169 microRNA, Arabidopsis)
0 (MicroRNAs)
0 (NF-YA2 protein, Arabidopsis)
0 (RNA Isoforms)
0 (RNA, Plant)
تواريخ الأحداث: Date Created: 20140219 Date Completed: 20150115 Latest Revision: 20220318
رمز التحديث: 20240829
DOI: 10.1111/nph.12735
PMID: 24533947
قاعدة البيانات: MEDLINE
الوصف
تدمد:1469-8137
DOI:10.1111/nph.12735