دورية أكاديمية

Radioiodine Biogeochemistry and Prevalence in Groundwater.

التفاصيل البيبلوغرافية
العنوان: Radioiodine Biogeochemistry and Prevalence in Groundwater.
المؤلفون: Kaplan DI; Savannah River National Laboratory , Aiken , SC , USA., Denham ME; Savannah River National Laboratory , Aiken , SC , USA., Zhang S; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA., Yeager C; Los Alamos National Laboratory , Los Alamos , NM , USA., Xu C; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA., Schwehr KA; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA., Li HP; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA., Ho YF; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA., Wellman D; Pacific Northwest National Laboratory , Richland , WA , USA., Santschi PH; Department of Marine Sciences, Texas A&M University , Galveston , TX , USA.
المصدر: Critical reviews in environmental science and technology [Crit Rev Environ Sci Technol] 2014 Oct 18; Vol. 44 (20), pp. 2287-2335.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: CRC Press Country of Publication: United States NLM ID: 9317948 Publication Model: Print Cited Medium: Print ISSN: 1064-3389 (Print) Linking ISSN: 10643389 NLM ISO Abbreviation: Crit Rev Environ Sci Technol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Boca Raton [Fla.] : CRC Press, c1993-
مستخلص: 129 I is commonly either the top or among the top risk drivers, along with 99 Tc, at radiological waste disposal sites and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. The risk stems largely from 129 I having a high toxicity, a high bioaccumulation factor (90% of all the body's iodine concentrates in the thyroid), a high inventory at source terms (due to its high fission yield), an extremely long half-life (16M years), and rapid mobility in the subsurface environment. Another important reason that 129 I is a key risk driver is that there is uncertainty regarding its biogeochemical fate and transport in the environment. We typically can define 129 I mass balance and flux at sites, but cannot predict accurately its response to changes in the environment. As a consequence of some of these characteristics, 129 I has a very low drinking water standard, which is set at 1 pCi/L, the lowest of all radionuclides in the Federal Register. Recently, significant advancements have been made in detecting iodine species at ambient groundwater concentrations, defining the nature of the organic matter and iodine bond, and quantifying the role of naturally occurring sediment microbes to promote iodine oxidation and reduction. These recent studies have led to a more mechanistic understanding of radioiodine biogeochemistry. The objective of this review is to describe these advances and to provide a state of the science of radioiodine biogeochemistry relevant to its fate and transport in the terrestrial environment and provide information useful for making decisions regarding the stewardship and remediation of 129 I contaminated sites. As part of this review, knowledge gaps were identified that would significantly advance the goals of basic and applied research programs for accelerating 129 I environmental remediation and reducing uncertainty associated with disposal of 129 I waste. Together the information gained from addressing these knowledge gaps will not alter the observation that 129 I is primarily mobile, but it will likely permit demonstration that the entire 129 I pool in the source term is not moving at the same rate and some may be tightly bound to the sediment, thereby smearing the modeled 129 I peak and reducing maximum calculated risk.
References: Environ Sci Technol. 2011 Dec 1;45(23):9975-83. (PMID: 22035296)
Environ Sci Technol. 2003 Sep 1;37(17):3885-90. (PMID: 12967109)
Environ Sci Technol. 2010 Dec 1;44(23):9042-8. (PMID: 21069952)
Microbes Environ. 2008;23(4):269-76. (PMID: 21558718)
Environ Sci Technol. 2013 Jan 2;47(1):390-7. (PMID: 23194146)
Sci Total Environ. 2003 Jun 1;308(1-3):97-109. (PMID: 12738204)
Anal Chim Acta. 2009 Jan 26;632(2):181-96. (PMID: 19110092)
Sci Total Environ. 2006 Apr 15;359(1-3):244-54. (PMID: 15927237)
ISME J. 2012 Sep;6(9):1665-76. (PMID: 22456444)
Antonie Van Leeuwenhoek. 1968;34(2):226. (PMID: 5301327)
Environ Sci Technol. 2009 Oct 1;43(19):7258-64. (PMID: 19848131)
Appl Environ Microbiol. 2011 Mar;77(6):2153-60. (PMID: 21278282)
Appl Environ Microbiol. 1998 Aug;64(8):2831-5. (PMID: 9687437)
Sci Total Environ. 2011 Sep 1;409(19):3857-65. (PMID: 21641630)
Chem Rev. 2002 Jul;102(7):2523-84. (PMID: 12105935)
Microb Ecol. 2012 Apr;63(3):522-31. (PMID: 22138964)
Environ Sci Technol. 2011 Jan 15;45(2):489-95. (PMID: 21138294)
Nature. 2002 Jun 6;417(6889):597-8. (PMID: 12050642)
Microb Ecol. 2005 May;49(4):547-57. (PMID: 16047096)
Environ Int. 2004 Jun;30(4):525-30. (PMID: 15031012)
Appl Environ Microbiol. 2001 Jun;67(6):2718-22. (PMID: 11375186)
FEMS Microbiol Lett. 2003 Dec 12;229(2):189-94. (PMID: 14680698)
Sci Total Environ. 2013 Apr 1;449:244-52. (PMID: 23428755)
ISME J. 2012 Sep;6(9):1653-64. (PMID: 22456445)
Sci Total Environ. 2004 Apr 5;321(1-3):257-71. (PMID: 15050400)
J Org Chem. 2003 Apr 18;68(8):2997-3008. (PMID: 12688766)
Appl Environ Microbiol. 2005 Feb;71(2):741-5. (PMID: 15691925)
Appl Environ Microbiol. 2012 Feb;78(3):759-67. (PMID: 22138990)
Environ Microbiol. 2012 Feb;14(2):414-25. (PMID: 22122741)
Environ Sci Technol. 2003 May 1;37(9):1892-8. (PMID: 12775062)
Appl Environ Microbiol. 2007 Dec;73(23):7536-41. (PMID: 17933915)
J Environ Radioact. 2006;86(2):212-26. (PMID: 16242819)
Bull Cancer. 2008 Feb;95(2):191-5. (PMID: 18304904)
J Appl Bacteriol. 1974 Dec;37(4):493-9. (PMID: 4436157)
Science. 1990 Jul 13;249(4965):160-2. (PMID: 2371563)
Sci Total Environ. 1999 Sep 30;237-238:31-41. (PMID: 10568263)
Environ Sci Technol. 2012 May 1;46(9):4837-44. (PMID: 22455542)
J Environ Radioact. 2004;74(1-3):221-32. (PMID: 15063550)
J Appl Bacteriol. 1973 Sep;36(3):407-17. (PMID: 4753414)
Anal Sci. 2008 Mar;24(3):405-9. (PMID: 18332551)
Water Res. 2004 Apr;38(8):2009-16. (PMID: 15087181)
Sci Total Environ. 2006 Jun 15;363(1-3):275-84. (PMID: 16487573)
Proc Natl Acad Sci U S A. 2008 May 13;105(19):6954-8. (PMID: 18458346)
J Contam Hydrol. 2005 Jul;78(3):185-205. (PMID: 16019109)
J Environ Radioact. 2010 Jun;101(6):451-7. (PMID: 18640749)
Environ Geochem Health. 1986 Jun;8(2):31-54. (PMID: 24213950)
Environ Sci Technol. 2011 Jul 1;45(13):5543-9. (PMID: 21663237)
J Environ Radioact. 2003;70(1-2):99-114. (PMID: 12915063)
فهرسة مساهمة: Keywords: Iodine-129; Iodine-131; covalent bonding; fission product; iodate; iodide; iodination; microbiology; organic matter; remediation; risk assessment
تواريخ الأحداث: Date Created: 20140930 Latest Revision: 20211021
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC4160254
DOI: 10.1080/10643389.2013.828273
PMID: 25264421
قاعدة البيانات: MEDLINE
الوصف
تدمد:1064-3389
DOI:10.1080/10643389.2013.828273