دورية أكاديمية

Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.

التفاصيل البيبلوغرافية
العنوان: Enhanced photoelectrochemical water oxidation via atomic layer deposition of TiO2 on fluorine-doped tin oxide nanoparticle films.
المؤلفون: Cordova IA; Electrical and Computer Engineering Department, Duke University, Durham, NC 27708, USA. isvar.cordova@duke.edu qing.peng@duke.edu jeff.glass@duke.edu., Peng Q, Ferrall IL, Rieth AJ, Hoertz PG, Glass JT
المصدر: Nanoscale [Nanoscale] 2015 May 14; Vol. 7 (18), pp. 8584-92.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: RSC Pub Country of Publication: England NLM ID: 101525249 Publication Model: Print Cited Medium: Internet ISSN: 2040-3372 (Electronic) Linking ISSN: 20403364 NLM ISO Abbreviation: Nanoscale Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Cambridge, UK : RSC Pub.
مستخلص: TiO2 is an exemplary semiconductor anode material for photoelectrochemical (PEC) water-splitting electrodes due to its functionality, long-term stability in corrosive environments, nontoxicity, and low cost. In this study, TiO2 photoanodes with enhanced photocurrent density were synthesized by atomic layer deposition (ALD) of TiO2 onto a porous, transparent, and conductive fluorine-doped tin oxide nanoparticle (nanoFTO) scaffold fabricated by solution processing. The simplicity and disordered nature of the nanoFTO nanostructure combined with the ultrathin conformal ALD TiO2 coatings offers advantages including decoupling charge carrier diffusion length from optical penetration depth, increased photon absorption probability through scattering, complimentary photon absorption, and favorable interfaces for charge separation and transfer across the various junctions. We examine the effects of porosity of the nanoFTO scaffold and thickness of the TiO2 coating on PEC performance and achieve an optimal photocurrent of 0.7 mA cm(-2) at 0 V vs. Ag/AgCl under 100 mW cm(-2) AM 1.5 G irradiation in a 1 M KOH aqueous electrolyte. Furthermore, the fundamental mechanisms behind the improvements are characterized via cyclic voltammetry, incident photon-to-current efficiency, transient photocurrent spectroscopy, and electrochemical impedance spectroscopy and are contrasted with those of single crystal rutile TiO2 nanowires. The strategies employed in this work highlight the opportunities inherent to these types of heteronanostructures, where the lessons may be applied to improve the PEC conversion efficiencies of other promising semiconductors, such as hematite (α-Fe2O3) and other materials more sensitive to visible light.
التعليقات: Erratum in: Nanoscale. 2015 Jul 28;7(28):12226. (PMID: 26134090)
تواريخ الأحداث: Date Created: 20150423 Date Completed: 20150804 Latest Revision: 20151001
رمز التحديث: 20221213
DOI: 10.1039/c4nr07377k
PMID: 25899449
قاعدة البيانات: MEDLINE
الوصف
تدمد:2040-3372
DOI:10.1039/c4nr07377k