دورية أكاديمية

The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit.

التفاصيل البيبلوغرافية
العنوان: The Killer Fly Hunger Games: Target Size and Speed Predict Decision to Pursuit.
المؤلفون: Wardill TJ; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK., Knowles K, Barlow L, Tapia G, Nordström K, Olberg RM, Gonzalez-Bellido PT
المصدر: Brain, behavior and evolution [Brain Behav Evol] 2015 Sep; Vol. 86 (1), pp. 28-37. Date of Electronic Publication: 2015 Sep 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Karger Country of Publication: Switzerland NLM ID: 0151620 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1421-9743 (Electronic) Linking ISSN: 00068977 NLM ISO Abbreviation: Brain Behav Evol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Basel, New York, Karger.
مواضيع طبية MeSH: Spatial Behavior*, Decision Making/*physiology , Insecta/*physiology , Predatory Behavior/*physiology , Size Perception/*physiology, Animals ; Photic Stimulation ; Probability ; Time Factors ; Time Perception ; Video Recording
مستخلص: Predatory animals have evolved to optimally detect their prey using exquisite sensory systems such as vision, olfaction and hearing. It may not be so surprising that vertebrates, with large central nervous systems, excel at predatory behaviors. More striking is the fact that many tiny insects, with their miniscule brains and scaled down nerve cords, are also ferocious, highly successful predators. For predation, it is important to determine whether a prey is suitable before initiating pursuit. This is paramount since pursuing a prey that is too large to capture, subdue or dispatch will generate a substantial metabolic cost (in the form of muscle output) without any chance of metabolic gain (in the form of food). In addition, during all pursuits, the predator breaks its potential camouflage and thus runs the risk of becoming prey itself. Many insects use their eyes to initially detect and subsequently pursue prey. Dragonflies, which are extremely efficient predators, therefore have huge eyes with relatively high spatial resolution that allow efficient prey size estimation before initiating pursuit. However, much smaller insects, such as killer flies, also visualize and successfully pursue prey. This is an impressive behavior since the small size of the killer fly naturally limits the neural capacity and also the spatial resolution provided by the compound eye. Despite this, we here show that killer flies efficiently pursue natural (Drosophila melanogaster) and artificial (beads) prey. The natural pursuits are initiated at a distance of 7.9 ± 2.9 cm, which we show is too far away to allow for distance estimation using binocular disparities. Moreover, we show that rather than estimating absolute prey size prior to launching the attack, as dragonflies do, killer flies attack with high probability when the ratio of the prey's subtended retinal velocity and retinal size is 0.37. We also show that killer flies will respond to a stimulus of an angular size that is smaller than that of the photoreceptor acceptance angle, and that the predatory response is strongly modulated by the metabolic state. Our data thus provide an exciting example of a loosely designed matched filter to Drosophila, but one which will still generate successful pursuits of other suitable prey.
(© 2015 The Author(s) Published by S. Karger AG, Basel.)
References: Philos Trans R Soc Lond B Biol Sci. 1978 Dec 5;285(1003):1-59. (PMID: 34179)
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4224-9. (PMID: 21368135)
J Exp Biol. 2014 Jan 15;217(Pt 2):225-34. (PMID: 24431144)
J Comp Physiol A. 1990 Nov;167(5):579-88. (PMID: 2074547)
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2005 Sep;191(9):791-7. (PMID: 16034603)
Z Naturforsch C. 1976 Nov-Dec;31(11-12):764-5. (PMID: 138304)
Nature. 2015 Jan 15;517(7534):333-8. (PMID: 25487153)
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Sep;200(9):799-809. (PMID: 24958227)
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2007 Jul;193(7):685-93. (PMID: 17487492)
PLoS One. 2009;4(1):e3876. (PMID: 19127286)
J Neurosci. 2013 Aug 7;33(32):13225-32. (PMID: 23926274)
Vision Res. 1975 Apr;15(4):515-25. (PMID: 1129998)
Annu Rev Entomol. 1997;42:147-77. (PMID: 15012311)
Front Neural Circuits. 2012 Oct 29;6:79. (PMID: 23112764)
J Comp Physiol A. 2000 Feb;186(2):155-62. (PMID: 10707313)
Brain Behav Evol. 2004;63(3):169-80. (PMID: 14726625)
J Exp Biol. 2008 Jun;211(Pt 11):1792-804. (PMID: 18490395)
J Exp Biol. 2012 Mar 15;215(Pt 6):903-13. (PMID: 22357584)
Curr Opin Neurobiol. 2012 Apr;22(2):267-71. (PMID: 22195994)
PLoS Biol. 2006 Mar;4(3):e54. (PMID: 16448249)
Vision Res. 2003 Sep;43(19):2053-9. (PMID: 12842158)
J Exp Biol. 2010 Oct 15;213(Pt 20):3399-408. (PMID: 20889819)
Phys Rev Lett. 2011 Apr 29;106(17):178103. (PMID: 21635066)
PLoS One. 2012;7(6):e39560. (PMID: 22761824)
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13229-32. (PMID: 11038523)
Science. 2012 Jan 27;335(6067):469-71. (PMID: 22282813)
معلومات مُعتمدة: BB/L024667/1 United Kingdom BB_ Biotechnology and Biological Sciences Research Council
تواريخ الأحداث: Date Created: 20150924 Date Completed: 20160701 Latest Revision: 20210109
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC4612549
DOI: 10.1159/000435944
PMID: 26398293
قاعدة البيانات: MEDLINE
الوصف
تدمد:1421-9743
DOI:10.1159/000435944