دورية أكاديمية

Methane and Nitrous Oxide Emissions from Flooded Rice Systems following the End-of-Season Drain.

التفاصيل البيبلوغرافية
العنوان: Methane and Nitrous Oxide Emissions from Flooded Rice Systems following the End-of-Season Drain.
المؤلفون: Adviento-Borbe MA, Necita Padilla G, Pittelkow CM, Simmonds M, van Kessel C, Linquist B
المصدر: Journal of environmental quality [J Environ Qual] 2015 Jul; Vol. 44 (4), pp. 1071-9.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: United States NLM ID: 0330666 Publication Model: Print Cited Medium: Print ISSN: 0047-2425 (Print) Linking ISSN: 00472425 NLM ISO Abbreviation: J Environ Qual Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: 2020- : [Hoboken, NJ] : Wiley
Original Publication: Madison, WI : Published cooperatively by American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America
مستخلص: Large CH and NO fluxes can occur from flooded rice ( L.) systems following end-of-season drainage, which contribute significantly to the total growing-season greenhouse gas (GHG) emissions. Field and laboratory studies were conducted to determine under what soil water conditions these emissions occur. In three field studies, GHG fluxes and dissolved CH in the soil pore water were measured before and after drainage. Across all fields, approximately 10% of the total seasonal CH emissions and 27% of the total seasonal NO emissions occurred following the final drain, confirming the importance of quantifying postdrainage CH and NO emissions. Preplant fertilizer N had no effect on CH emissions or dissolved CH; however, increased postdrainage NO fluxes were observed at higher N rates. To determine when postdrainage sampling needs to take place, our laboratory incubation study measured CH and NO fluxes from intact soil cores from these fields as the soil dried. Across fields, maximum CH emissions occurred at approximately 88% water-filled pore space (WFPS), but emissions were observed between 47 and 156% WFPS. In contrast, maximum NO emissions occurred between 45 and 71% WFPS and were observed between 16 and 109% WFPS. For all fields, gas samplings between 76 and 100% WFPS for CH emissions and between 43 and 78% WFPS for NO emissions was necessary to capture 95% of these postdrainage emissions. We recommend that frequent gas sampling following drainage be included in the GHG protocol of total GHG emissions.
(Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.)
تواريخ الأحداث: Date Created: 20151006 Latest Revision: 20191120
رمز التحديث: 20240513
DOI: 10.2134/jeq2014.11.0497
PMID: 26437088
قاعدة البيانات: MEDLINE
الوصف
تدمد:0047-2425
DOI:10.2134/jeq2014.11.0497