دورية أكاديمية

Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight.

التفاصيل البيبلوغرافية
العنوان: Function of Succinoglycan Polysaccharide in Sinorhizobium meliloti Host Plant Invasion Depends on Succinylation, Not Molecular Weight.
المؤلفون: Mendis HC; Department of Biological Science, Florida State University, Tallahassee, Florida, USA., Madzima TF; Department of Biological Science, Florida State University, Tallahassee, Florida, USA., Queiroux C; Department of Biological Science, Florida State University, Tallahassee, Florida, USA., Jones KM; Department of Biological Science, Florida State University, Tallahassee, Florida, USA kmjones@bio.fsu.edu.
المصدر: MBio [mBio] 2016 Jun 21; Vol. 7 (3). Date of Electronic Publication: 2016 Jun 21.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Society for Microbiology Country of Publication: United States NLM ID: 101519231 Publication Model: Electronic Cited Medium: Internet ISSN: 2150-7511 (Electronic) NLM ISO Abbreviation: mBio Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Washington, D.C. : American Society for Microbiology
مواضيع طبية MeSH: Symbiosis*, Medicago truncatula/*microbiology , Polysaccharides, Bacterial/*metabolism , Sinorhizobium meliloti/*physiology, Gene Deletion ; Glycoside Hydrolases/genetics ; Glycoside Hydrolases/metabolism ; Molecular Weight ; Polysaccharides, Bacterial/chemistry ; Sinorhizobium meliloti/enzymology ; Sinorhizobium meliloti/genetics
مستخلص: Unlabelled: The acidic polysaccharide succinoglycan produced by the rhizobial symbiont Sinorhizobium meliloti 1021 is required for this bacterium to invade the host plant Medicago truncatula and establish a nitrogen-fixing symbiosis. S. meliloti mutants that cannot make succinoglycan cannot initiate invasion structures called infection threads in plant root hairs. S. meliloti exoH mutants that cannot succinylate succinoglycan are also unable to form infection threads, despite the fact that they make large quantities of succinoglycan. Succinoglycan produced by exoH mutants is refractory to cleavage by the glycanases encoded by exoK and exsH, and thus succinoglycan produced by exoH mutants is made only in the high-molecular-weight (HMW) form. One interpretation of the symbiotic defect of exoH mutants is that the low-molecular-weight (LMW) form of succinoglycan is required for infection thread formation. However, our data demonstrate that production of the HMW form of succinoglycan by S. meliloti 1021 is sufficient for invasion of the host M. truncatula and that the LMW form is not required. Here, we show that S. meliloti strains deficient in the exoK- and exsH-encoded glycanases invade M. truncatula and form a productive symbiosis, although they do this with somewhat less efficiency than the wild type. We have also characterized the polysaccharides produced by these double glycanase mutants and determined that they consist of only HMW succinoglycan and no detectable LMW succinoglycan. This demonstrates that LMW succinoglycan is not required for host invasion. These results suggest succinoglycan function is not dependent upon the presence of a small, readily diffusible form.
Importance: Sinorhizobium meliloti is a bacterium that forms a beneficial symbiosis with legume host plants. S. meliloti and other rhizobia convert atmospheric nitrogen to ammonia, a nutrient source for the host plant. To establish the symbiosis, rhizobia must invade plant roots, supplying the proper signals to prevent a plant immune response during invasion. A polysaccharide, succinoglycan, produced by S. meliloti is required for successful invasion. Here, we show that the critical feature of succinoglycan that allows infection to proceed is the attachment of a "succinyl" chemical group and that the chain length of succinoglycan is much less important for its function. We also show that none of the short-chain versions of succinoglycan is produced in the absence of two chain-cleaving enzymes.
(Copyright © 2016 Mendis et al.)
References: Plant Physiol. 1993 Oct;103(2):379-384. (PMID: 12231944)
Nature. 2015 Jul 16;523(7560):308-12. (PMID: 26153863)
Methods Enzymol. 2012;510:121-39. (PMID: 22608724)
Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):704-9. (PMID: 18184805)
Annu Rev Phytopathol. 2011;49:533-55. (PMID: 21438680)
Science. 1986 Aug 29;233(4767):977-80. (PMID: 3738520)
Mol Plant Microbe Interact. 2014 Dec;27(12 ):1307-17. (PMID: 25387133)
Plant Physiol. 2006 May;141(1):178-87. (PMID: 16531487)
Nat Rev Microbiol. 2007 Aug;5(8):619-33. (PMID: 17632573)
Carbohydr Res. 1990 Sep 5;204:103-7. (PMID: 2279241)
Proc Natl Acad Sci U S A. 1985 Sep;82(18):6231-5. (PMID: 3862129)
Cell. 1989 Feb 24;56(4):661-72. (PMID: 2537152)
Mol Gen Genet. 1999 Jul;261(6):1032-44. (PMID: 10485295)
J Bacteriol. 1989 Sep;171(9):4821-30. (PMID: 2549002)
Development. 2014 Sep;141(18):3517-28. (PMID: 25183870)
Mol Plant Microbe Interact. 2013 Sep;26(9):1089-105. (PMID: 23656330)
Glycobiology. 2006 Dec;16(12):1181-93. (PMID: 16957092)
Mol Plant Microbe Interact. 2005 Nov;18(11):1123-9. (PMID: 16353547)
Mol Microbiol. 1999 Aug;33(4):712-20. (PMID: 10447881)
Mol Microbiol. 1997 Jul;25(1):117-34. (PMID: 11902715)
J Bacteriol. 1992 May;174(10):3403-6. (PMID: 1577707)
J Bacteriol. 2012 Aug;194(16):4322-31. (PMID: 22685282)
Proc Natl Acad Sci U S A. 1989 May;86(9):3055-9. (PMID: 2717610)
J Bacteriol. 2000 Aug;182(15):4310-8. (PMID: 10894742)
J Bacteriol. 1995 Aug;177(15):4289-96. (PMID: 7635814)
J Bacteriol. 1998 Aug;180(16):4184-91. (PMID: 9696768)
J Bacteriol. 2006 Sep;188(17):6168-78. (PMID: 16923883)
BMC Microbiol. 2012 May 15;12:74. (PMID: 22587634)
J Bacteriol. 1993 Jun;175(11):3653-5. (PMID: 8501069)
J Bacteriol. 1998 Oct;180(19):5183-91. (PMID: 9748453)
J Bacteriol. 1994 Apr;176(7):1997-2002. (PMID: 8144468)
J Bacteriol. 1991 Jun;173(12 ):3776-88. (PMID: 2050634)
Mol Plant Microbe Interact. 2013 Mar;26(3):319-29. (PMID: 23134480)
Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61. (PMID: 16261190)
Cell. 1987 Nov 20;51(4):579-87. (PMID: 2824062)
J Bacteriol. 1984 Jul;159(1):120-4. (PMID: 6330024)
J Bacteriol. 2013 Dec;195(23):5362-9. (PMID: 24078609)
Annu Rev Genet. 2011;45:119-44. (PMID: 21838550)
Int J Biol Macromol. 1997 Feb;20(1):1-7. (PMID: 9110180)
Curr Biol. 2008 Jul 22;18(14):1078-83. (PMID: 18639458)
J Bacteriol. 1993 Nov;175(21):7045-55. (PMID: 8226646)
J Bacteriol. 2002 Sep;184(18):5067-76. (PMID: 12193623)
Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5625-9. (PMID: 1608972)
Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13477-82. (PMID: 9811825)
Microbiol Rev. 1994 Jun;58(2):145-61. (PMID: 8078434)
J Bacteriol. 1998 Oct;180(20):5426-31. (PMID: 9765575)
Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):4912-7. (PMID: 9560202)
J Bacteriol. 1991 Jan;173(2):851-9. (PMID: 1987168)
Carbohydr Res. 1990 May 1;198(2):305-12. (PMID: 2379191)
Glycobiology. 2005 Jan;15(1):101-8. (PMID: 15355932)
J Bacteriol. 2013 May;195(9):2032-8. (PMID: 23457246)
J Bacteriol. 1988 Aug;170(8):3327-32. (PMID: 3403505)
Microbiol Mol Biol Rev. 2004 Jun;68(2):280-300. (PMID: 15187185)
J Vis Exp. 2013 Oct 01;(80):null. (PMID: 24121837)
J Bacteriol. 1988 Sep;170(9):4239-48. (PMID: 2842306)
Mol Plant Microbe Interact. 1994 Sep-Oct;7(5):553-63. (PMID: 7949324)
Planta. 2000 Jul;211(2):218-26. (PMID: 10945216)
Cell. 1993 Jul 30;74(2):269-80. (PMID: 8343955)
J Bacteriol. 1993 Nov;175(21):7033-44. (PMID: 8226645)
Development. 1999 Aug;126(16):3617-28. (PMID: 10409507)
J Bacteriol. 2000 Feb;182(3):599-606. (PMID: 10633091)
J Bacteriol. 1999 Nov;181(21):6788-96. (PMID: 10542182)
Microbiology. 1999 Mar;145 ( Pt 3):603-11. (PMID: 10217494)
المشرفين على المادة: 0 (Polysaccharides, Bacterial)
73667-50-2 (succinoglycan)
EC 3.2.1.- (Glycoside Hydrolases)
EC 3.2.1.- (glycanase)
تواريخ الأحداث: Date Created: 20160623 Date Completed: 20170615 Latest Revision: 20201209
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC4916376
DOI: 10.1128/mBio.00606-16
PMID: 27329751
قاعدة البيانات: MEDLINE
الوصف
تدمد:2150-7511
DOI:10.1128/mBio.00606-16