دورية أكاديمية

mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.

التفاصيل البيبلوغرافية
العنوان: mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation.
المؤلفون: Fitter S; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia stephen.fitter@adelaide.edu.au.; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia., Matthews MP; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia., Martin SK; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia.; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia., Xie J; Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, Australia., Ooi SS; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia.; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia., Walkley CR; Stem Cell Regulation Unit, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia., Codrington JD; School of Mechanical Engineering, University of Adelaide, Adelaide, Australia., Ruegg MA; Biozentrum, University of Basel, Basel, Switzerland., Hall MN; Biozentrum, University of Basel, Basel, Switzerland., Proud CG; Nutrition and Metabolism, South Australian Health and Medical Research Institute, Adelaide, Australia.; School of Biological Sciences, University of Adelaide, Adelaide, Australia.; Department of Biochemistry and Genetics, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China., Gronthos S; Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia.; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia., Zannettino ACW; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Science, University of Adelaide, Adelaide, Australia.; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
المصدر: Molecular and cellular biology [Mol Cell Biol] 2017 Mar 17; Vol. 37 (7). Date of Electronic Publication: 2017 Mar 17 (Print Publication: 2017).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Taylor & Francis Country of Publication: United States NLM ID: 8109087 Publication Model: Electronic-Print Cited Medium: Internet ISSN: 1098-5549 (Electronic) Linking ISSN: 02707306 NLM ISO Abbreviation: Mol Cell Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2023- : [Philadelphia] : Taylor & Francis
Original Publication: [Washington, D.C.] : American Society for Microbiology, [c1981-
مواضيع طبية MeSH: Bone Development* , Cell Differentiation*, Multiprotein Complexes/*metabolism , Osteoblasts/*cytology , Osteoblasts/*metabolism , TOR Serine-Threonine Kinases/*metabolism, Adaptor Proteins, Signal Transducing/metabolism ; Adipose Tissue/metabolism ; Animals ; Animals, Newborn ; Gene Deletion ; Growth Plate/metabolism ; Mechanistic Target of Rapamycin Complex 1 ; Mice, Transgenic ; Organ Size ; Phenotype ; Regulatory-Associated Protein of mTOR ; Transcription, Genetic
مستخلص: The mammalian target of rapamycin complex 1 (mTORC1) is activated by extracellular factors that control bone accrual. However, the direct role of this complex in osteoblast biology remains to be determined. To investigate this question, we disrupted mTORC1 function in preosteoblasts by targeted deletion of Raptor ( Rptor ) in Osterix -expressing cells. Deletion of Rptor resulted in reduced limb length that was associated with smaller epiphyseal growth plates in the postnatal skeleton. Rptor deletion caused a marked reduction in pre- and postnatal bone accrual, which was evident in skeletal elements derived from both intramembranous and endochondrial ossification. The decrease in bone accrual, as well as the associated increase in skeletal fragility, was due to a reduction in osteoblast function. In vitro , osteoblasts derived from knockout mice display a reduced osteogenic potential, and an assessment of bone-developmental markers in Rptor knockout osteoblasts revealed a transcriptional profile consistent with an immature osteoblast phenotype suggesting that osteoblast differentiation was stalled early in osteogenesis. Metabolic labeling and an assessment of cell size of Rptor knockout osteoblasts revealed a significant decrease in protein synthesis, a major driver of cell growth. These findings demonstrate that mTORC1 plays an important role in skeletal development by regulating mRNA translation during preosteoblast differentiation.
(Copyright © 2017 American Society for Microbiology.)
References: PLoS Genet. 2014 Jan 30;10 (1):e1004145. (PMID: 24497849)
Methods Mol Biol. 2009;482:259-68. (PMID: 19089361)
Cold Spring Harb Protoc. 2009 Mar;2009(3):pdb.prot5170. (PMID: 20147105)
Cell. 1997 May 30;89(5):755-64. (PMID: 9182763)
Dev Cell. 2004 Mar;6(3):423-35. (PMID: 15030764)
J Biol Chem. 2009 Sep 4;284(36):24341-53. (PMID: 19553685)
Acta Anat (Basel). 1977;97(4):459-68. (PMID: 857571)
Curr Biol. 2000 Jan 13;10(1):47-50. (PMID: 10660304)
Development. 2006 Aug;133(16):3231-44. (PMID: 16854976)
Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12919-24. (PMID: 20615976)
Eur J Paediatr Neurol. 2013 Sep;17(5):479-85. (PMID: 23567018)
Dev Biol. 2009 Apr 1;328(1):78-93. (PMID: 19389373)
Blood. 2008 Mar 1;111(5):2538-47. (PMID: 18042796)
J Bone Miner Res. 2013 Apr;28(4):926-35. (PMID: 23165754)
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11851-6. (PMID: 18697945)
Science. 2011 Jun 10;332(6035):1322-6. (PMID: 21659605)
Adv Biol Regul. 2014 May;55:15-27. (PMID: 24853390)
Genes Dev. 2004 Jul 1;18(13):1533-8. (PMID: 15231735)
PLoS One. 2013 Aug 08;8(8):e71318. (PMID: 23951132)
Cell Metab. 2008 Nov;8(5):411-24. (PMID: 19046572)
Bone. 1999 Jul;25(1):107-8. (PMID: 10423032)
Cancer Res. 2010 Jan 1;70(1):288-98. (PMID: 20028854)
Bone. 2011 Sep;49(3):404-11. (PMID: 21555004)
Pediatr Transplant. 2011 Jun;15(4):437-41. (PMID: 21338459)
Mol Cell Biol. 2002 Feb;22(4):1016-26. (PMID: 11809794)
J Biol Chem. 2011 May 27;286(21):19149-58. (PMID: 21471200)
PLoS One. 2014 Jan 15;9(1):e85161. (PMID: 24454809)
Nat Methods. 2012 Jul;9(7):671-5. (PMID: 22930834)
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2259-64. (PMID: 17287359)
BMC Dev Biol. 2001;1:4. (PMID: 11299042)
Bone. 2006 Sep;39(3):505-12. (PMID: 16679075)
Dev Cell. 2010 Aug 17;19(2):329-44. (PMID: 20708594)
J Cell Sci. 2003 May 1;116(Pt 9):1827-35. (PMID: 12665563)
Crit Rev Oncol Hematol. 2013 Aug;87(2):101-11. (PMID: 23838481)
Blood. 2010 Jan 28;115(4):766-74. (PMID: 19890095)
J Biol Chem. 2003 Sep 5;278(36):33637-44. (PMID: 12807916)
Stem Cells. 2015 Apr;33(4):1359-65. (PMID: 25537496)
Development. 2005 Jan;132(1):49-60. (PMID: 15576404)
Genes Dev. 2003 Jun 1;17(11):1352-65. (PMID: 12782654)
Bone. 2016 Sep;90:50-8. (PMID: 27262777)
Bone. 2009 Dec;45(6):1133-45. (PMID: 19679212)
Mol Cell Biol. 2015 May;35(10 ):1805-24. (PMID: 25776553)
Genes Dev. 2002 Jun 15;16(12 ):1472-87. (PMID: 12080086)
Mol Cell Biol. 2014 May;34(10 ):1850-62. (PMID: 24591652)
Cell. 1997 May 30;89(5):747-54. (PMID: 9182762)
Development. 2014 Jul;141(14):2848-54. (PMID: 24948603)
Cold Spring Harb Perspect Biol. 2013 Jan 01;5(1):a008334. (PMID: 23284041)
J Cell Sci. 2013 Apr 15;126(Pt 8):1713-9. (PMID: 23641065)
Cell. 2012 Apr 13;149(2):274-93. (PMID: 22500797)
Clin Sci (Lond). 2015 Nov;129(10):895-914. (PMID: 26330617)
Mol Cell Biol. 2000 Dec;20(23):8783-92. (PMID: 11073979)
Dev Cell. 2005 May;8(5):739-50. (PMID: 15866164)
J Biol Chem. 2008 Oct 24;283(43):29119-25. (PMID: 18703512)
Genes Dev. 2001 Jun 1;15(11):1383-92. (PMID: 11390358)
Nature. 2012 May 02;485(7396):109-13. (PMID: 22552098)
Science. 2011 Jun 10;332(6035):1317-22. (PMID: 21659604)
PLoS One. 2015 Jun 19;10 (6):e0130627. (PMID: 26090674)
Nature. 2013 Mar 21;495(7441):375-8. (PMID: 23485973)
Science. 1999 Sep 24;285(5436):2126-9. (PMID: 10497130)
Biochem J. 2012 May 15;444(1):141-51. (PMID: 22428559)
Transgenic Res. 2012 Aug;21(4):885-93. (PMID: 22160436)
J Immunol Methods. 1988 Apr 22;109(1):49-59. (PMID: 2895795)
Mol Cell. 2010 Oct 22;40(2):310-22. (PMID: 20965424)
Cell. 2002 Jul 26;110(2):163-75. (PMID: 12150925)
Nat Med. 2012 Jul;18(7):1095-101. (PMID: 22729283)
Genes Dev. 2003 Aug 15;17(16):1979-91. (PMID: 12923053)
Cell. 2010 Jul 23;142(2):309-19. (PMID: 20655471)
Nat Genet. 2006 Dec;38(12):1424-9. (PMID: 17099713)
PLoS Genet. 2015 Aug 04;11(8):e1005426. (PMID: 26241748)
Nature. 2003 May 15;423(6937):332-6. (PMID: 12748651)
Curr Biol. 2004 Jul 27;14(14):1296-302. (PMID: 15268862)
J Biol Chem. 2007 Aug 31;282(35):25649-58. (PMID: 17553792)
Development. 2007 Jun;134(11):2159-69. (PMID: 17507416)
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19450-5. (PMID: 24218567)
Cell. 2002 Jan 11;108(1):17-29. (PMID: 11792318)
Stem Cells. 2009 Oct;27(10 ):2457-68. (PMID: 19609939)
فهرسة مساهمة: Keywords: Raptor; mTORC1; osteoblast; osteogenesis
المشرفين على المادة: 0 (Adaptor Proteins, Signal Transducing)
0 (Multiprotein Complexes)
0 (Regulatory-Associated Protein of mTOR)
0 (Rptor protein, mouse)
EC 2.7.11.1 (Mechanistic Target of Rapamycin Complex 1)
EC 2.7.11.1 (TOR Serine-Threonine Kinases)
تواريخ الأحداث: Date Created: 20170111 Date Completed: 20170630 Latest Revision: 20211204
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC5359426
DOI: 10.1128/MCB.00668-16
PMID: 28069737
قاعدة البيانات: MEDLINE
الوصف
تدمد:1098-5549
DOI:10.1128/MCB.00668-16