دورية أكاديمية

Bridging the Gap: Engineered Porcine-derived Urinary Bladder Matrix Conduits as a Novel Scaffold for Peripheral Nerve Regeneration.

التفاصيل البيبلوغرافية
العنوان: Bridging the Gap: Engineered Porcine-derived Urinary Bladder Matrix Conduits as a Novel Scaffold for Peripheral Nerve Regeneration.
المؤلفون: Nguyen L; From the Departments of *Plastic Surgery, and †Biomedical Engineering, and ‡Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN; §Department of Surgery, Morristown Medical Center, Morristown, NJ; ∥Department of Surgery, University of South Carolina, Columbia, SC., Afshari A, Kelm ND, Pollins AC, Shack RB, Does MD, Thayer WP
المصدر: Annals of plastic surgery [Ann Plast Surg] 2017 Jun; Vol. 78 (6S Suppl 5), pp. S328-S334.
نوع المنشور: Comparative Study; Journal Article
اللغة: English
بيانات الدورية: Publisher: Little, Brown And Company Country of Publication: United States NLM ID: 7805336 Publication Model: Print Cited Medium: Internet ISSN: 1536-3708 (Electronic) Linking ISSN: 01487043 NLM ISO Abbreviation: Ann Plast Surg Subsets: MEDLINE
أسماء مطبوعة: Publication: Boston Ma : Little, Brown And Company
Original Publication: Boston, Little, Brown.
مواضيع طبية MeSH: Tissue Engineering* , Tissue Scaffolds*, Nerve Regeneration/*physiology , Sciatic Nerve/*injuries, Animals ; Autografts ; Diffusion Tensor Imaging ; Disease Models, Animal ; Female ; Peripheral Nerve Injuries/surgery ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Risk Factors ; Sciatic Nerve/surgery ; Sensitivity and Specificity ; Swine ; Urinary Bladder/diagnostic imaging ; Urinary Bladder/surgery ; Urinary Diversion
مستخلص: Purpose: This study aims to compare engineered nerve conduits constructed from porcine-derived urinary bladder matrix (UBM) with the criterion-standard nerve autografts, for segmental loss peripheral nerve repairs.
Methods: Forty-eight Sprague-Dawley rats were divided into 2 groups. All underwent a 10-mm sciatic nerve gap injury. This was repaired using either (1) reverse autograft-the 10-mm cut segment was oriented 180 degrees and used to coapt the proximal and distal stumps or (2) UBM conduit-the 10-mm nerve gap was bridged with UBM conduit. Behavior assessments such as sciatic function index and foot fault asymmetry scores were performed weekly. At 3- or 6-week time endpoints, the repaired nerves and bilateral gastrocnemius/soleus muscles were harvested from each animal. Nerves were evaluated using immunohistochemistry for motor and sensory axon staining and with diffusion tensor imaging. The net wet muscle weights were calculated to assess the degree of muscle atrophy.
Results: The UBM group demonstrated significantly improved foot fault asymmetry scores at 2 and 4 weeks, whereas there was no difference in sciatic function index. The net muscle weights were similar between both groups. Motor axon counts proximal/inside/distal to the conduit/graft were similar between UBM conduits and reverse autografts, whereas sensory axon counts within and distal to the conduit were significantly higher than those of the autograft at 6 weeks. Sensory axonal regeneration seemed to be adherent to the inner surface of the UBM conduit, whereas it had a scattered appearance in autografts. Diffusion tensor imaging parameters between groups were similar.
Conclusions: Urinary bladder matrix conduits prove to be at least similar to nerve autografts for the repair of peripheral nerve injuries with a short gap. The matrix perhaps serves as a scaffold to augment sensory nerve growth.
Clinical Relevance: In a clinical setting, UBM may eliminate the donor site morbidity and increased operative time associated with nerve autografting.
References: J Neurosci Res. 1982;8(2-3):179-93. (PMID: 7154111)
Plast Reconstr Surg. 2014 Jun;133(6):1420-30. (PMID: 24867724)
Neurosci Lett. 2008 Jul 4;439(1):42-6. (PMID: 18502047)
Exp Neurol. 1982 Sep;77(3):634-43. (PMID: 7117467)
J Reconstr Microsurg. 2009 Jul;25(6):339-44. (PMID: 19301234)
J Neurosci Res. 2000 Jun 1;60(5):666-77. (PMID: 10820438)
Hand (N Y). 2014 Jun;9(2):131-7. (PMID: 24839412)
J Surg Res. 2005 Sep;128(1):87-97. (PMID: 15922361)
Microsurgery. 1991;12(2):76-9. (PMID: 2011070)
Plast Surg Int. 2016;2016:4175293. (PMID: 26904282)
J Neurosci Res. 2015 Apr;93(4):572-83. (PMID: 25425242)
Semin Cell Dev Biol. 2002 Oct;13(5):377-83. (PMID: 12324220)
Microsurgery. 2008;28(4):265-72. (PMID: 18381659)
J Bone Joint Surg Am. 2014 Sep 3;96(17):1461-7. (PMID: 25187585)
Burns. 1995 Jun;21(4):243-8. (PMID: 7662122)
Hand (N Y). 2009 Jun;4(2):180-6. (PMID: 19137378)
Regen Med. 2015;10(5):611-22. (PMID: 26237704)
Crit Rev Biomed Eng. 2011;39(2):81-124. (PMID: 21488817)
Exp Transl Stroke Med. 2010 Jul 19;2(1):13. (PMID: 20642841)
Arq Neuropsiquiatr. 2006 Sep;64(3B):750-6. (PMID: 17057880)
Dev Neurobiol. 2011 Nov;71(11):1054-72. (PMID: 21761574)
Plast Reconstr Surg. 1989 Jan;83(1):129-38. (PMID: 2909054)
J Bone Joint Surg Am. 2009 Sep;91(9):2194-204. (PMID: 19723997)
Neural Regen Res. 2014 Nov 15;9(22):1943-8. (PMID: 25598773)
Arch Facial Plast Surg. 2003 Jan-Feb;5(1):40-4; discussion 45. (PMID: 12533137)
Folia Morphol (Warsz). 2009 Feb;68(1):1-7. (PMID: 19384823)
Injury. 2008 Oct;39 Suppl 4:29-39. (PMID: 18804584)
J Bone Joint Surg Am. 2013 Dec 4;95(23):2144-51. (PMID: 24306702)
J Hand Surg Am. 2007 Dec;32(10):1521-9. (PMID: 18070638)
J Am Acad Orthop Surg. 2012 Feb;20(2):63-8. (PMID: 22302443)
Tissue Eng. 2006 Mar;12(3):519-26. (PMID: 16579685)
J Neurosci Methods. 2008 May 30;170(2):255-61. (PMID: 18325595)
Exp Neurol. 2010 May;223(1):238-44. (PMID: 19879260)
Microsurgery. 1989;10(3):226-35. (PMID: 2796719)
معلومات مُعتمدة: T32 EB014841 United States EB NIBIB NIH HHS
تواريخ الأحداث: Date Created: 20170323 Date Completed: 20180404 Latest Revision: 20181113
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC5946697
DOI: 10.1097/SAP.0000000000001042
PMID: 28328634
قاعدة البيانات: MEDLINE
الوصف
تدمد:1536-3708
DOI:10.1097/SAP.0000000000001042