دورية أكاديمية

Backside absorbing layer microscopy: Watching graphene chemistry.

التفاصيل البيبلوغرافية
العنوان: Backside absorbing layer microscopy: Watching graphene chemistry.
المؤلفون: Campidelli S; Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France., Abou Khachfe R; Institut Universitaire de Technologie de Saida, Université Libanaise, Saida, Lebanon., Jaouen K; Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France., Monteiller J; Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France., Amra C; Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France., Zerrad M; Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France., Cornut R; Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France., Derycke V; Laboratoire d'Innovation en Chimie des Surfaces et Nanosciences (LICSEN), Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Énergie, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette cedex, France., Ausserré D; Institut des Molécules et Matériaux du Mans (UMR 6283), Equipe 'Paysages Moléculaires, Horizons Biophotoniques,' Université du Maine, Avenue Olivier Messiaen, F-72000 Le Mans, France.
المصدر: Science advances [Sci Adv] 2017 May 12; Vol. 3 (5), pp. e1601724. Date of Electronic Publication: 2017 May 12 (Print Publication: 2017).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: American Association for the Advancement of Science Country of Publication: United States NLM ID: 101653440 Publication Model: eCollection Cited Medium: Internet ISSN: 2375-2548 (Electronic) Linking ISSN: 23752548 NLM ISO Abbreviation: Sci Adv Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Washington, DC : American Association for the Advancement of Science, [2015]-
مستخلص: The rapid rise of two-dimensional nanomaterials implies the development of new versatile, high-resolution visualization and placement techniques. For example, a single graphene layer becomes observable on Si/SiO 2 substrates by reflected light under optical microscopy because of interference effects when the thickness of silicon oxide is optimized. However, differentiating monolayers from bilayers remains challenging, and advanced techniques, such as Raman mapping, atomic force microscopy (AFM), or scanning electron microscopy (SEM) are more suitable to observe graphene monolayers. The first two techniques are slow, and the third is operated in vacuum; hence, in all cases, real-time experiments including notably chemical modifications are not accessible. The development of optical microscopy techniques that combine the speed, large area, and high contrast of SEM with the topological information of AFM is therefore highly desirable. We introduce a new widefield optical microscopy technique based on the use of previously unknown antireflection and absorbing (ARA) layers that yield ultrahigh contrast reflection imaging of monolayers. The BALM (backside absorbing layer microscopy) technique can achieve the subnanometer-scale vertical resolution, large area, and real-time imaging. Moreover, the inverted optical microscope geometry allows its easy implementation and combination with other techniques. We notably demonstrate the potentiality of BALM by in operando imaging chemical modifications of graphene oxide. The technique can be applied to the deposition, observation, and modification of any nanometer-thick materials.
References: Science. 2015 Jan 2;347(6217):1246501. (PMID: 25554791)
Nat Nanotechnol. 2014 Oct;9(10):794-807. (PMID: 25286274)
Science. 2016 Jul 29;353(6298):aac9439. (PMID: 27471306)
Angew Chem Int Ed Engl. 2013 May 3;52(19):4986-97. (PMID: 23580235)
Acc Chem Res. 2013 Oct 15;46(10):2235-43. (PMID: 23194290)
Appl Opt. 1985 Feb 15;24(4):472. (PMID: 18216972)
ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21270-7. (PMID: 26348321)
Nat Mater. 2013 Feb;12(2):158-64. (PMID: 23142836)
Nat Nanotechnol. 2010 Jul;5(7):487-96. (PMID: 20512128)
Nature. 2010 Sep 9;467(7312):190-3. (PMID: 20720538)
Nature. 2012 Oct 11;490(7419):192-200. (PMID: 23060189)
Science. 2008 Jun 6;320(5881):1308. (PMID: 18388259)
Chem Soc Rev. 2012 Mar 21;41(6):2283-307. (PMID: 22143223)
Acc Chem Res. 2013 Oct 15;46(10):2211-24. (PMID: 23480658)
Chem Soc Rev. 2014 Jan 7;43(1):291-312. (PMID: 24121318)
Nano Lett. 2007 Sep;7(9):2707-10. (PMID: 17665963)
Materials (Basel). 2016 Jun 21;9(6):null. (PMID: 28773620)
Chem Soc Rev. 2013 Apr 7;42(7):2824-60. (PMID: 23124307)
Nat Mater. 2013 Jan;12(1):20-4. (PMID: 23064496)
فهرسة مساهمة: Keywords: Chemistry; absorbing anti-reflection coating; functionalization; graphene; optical microscopy; real time imaging
تواريخ الأحداث: Date Created: 20170517 Date Completed: 20180620 Latest Revision: 20181113
رمز التحديث: 20231215
مُعرف محوري في PubMed: PMC5429035
DOI: 10.1126/sciadv.1601724
PMID: 28508053
قاعدة البيانات: MEDLINE
الوصف
تدمد:2375-2548
DOI:10.1126/sciadv.1601724