دورية أكاديمية

Spatial-temporal transcriptional dynamics of long non-coding RNAs in human brain.

التفاصيل البيبلوغرافية
العنوان: Spatial-temporal transcriptional dynamics of long non-coding RNAs in human brain.
المؤلفون: Zhang XQ; School of Medicine, South China University of Technology (SCUT), Guangzhou 510006, P. R. China., Wang ZL; RNA Medicine and Informatics Center, Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China., Poon MW; Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P. R. China., Yang JH; RNA Medicine and Informatics Center, Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
المصدر: Human molecular genetics [Hum Mol Genet] 2017 Aug 15; Vol. 26 (16), pp. 3202-3211.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: IRL Press at Oxford University Press Country of Publication: England NLM ID: 9208958 Publication Model: Print Cited Medium: Internet ISSN: 1460-2083 (Electronic) Linking ISSN: 09646906 NLM ISO Abbreviation: Hum Mol Genet Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, England ; New York : IRL Press at Oxford University Press, c1992-
مواضيع طبية MeSH: Brain/*physiology , RNA, Long Noncoding/*genetics , RNA, Long Noncoding/*metabolism, Autopsy ; Brain/metabolism ; Embryonic Development/genetics ; Gene Expression Regulation ; Genome, Human ; Humans ; Regulatory Elements, Transcriptional ; Spatio-Temporal Analysis ; Transcriptome
مستخلص: The functional architecture of the human brain is greatly determined by the temporal and spatial regulation of the transcription process. However, the spatial and temporal transcriptional landscape of long non-coding RNAs (lncRNAs) during human brain development remains poorly understood. Here, we report the genome-wide lncRNA transcriptional analysis in an extensive series of 1340 post-mortem human brain specimens collected from 16 regions spanning the period from early embryo development to late adulthood. We discovered that lncRNA transcriptome dramatically changed during fetal development, while transited to a surprisingly relatively stable state after birth till the late adulthood. We also discovered that the transcription map of lncRNAs was spatially different, and that this spatial difference was developmentally regulated. Of the 16 brain regions explored (cerebellar cortex, thalamus, striatum, amygdala, hippocampus and 11 neocortex areas), cerebellar cortex showed the most distinct lncRNA expression features from all remaining brain regions throughout the whole developmental period, reflecting its unique developmental and functional features. Furthermore, by characterizing the functional modules and cellular processes of the spatial-temporal dynamic lncRNAs, we found that they were significantly associated with the RNA processing, neuron differentiation and synaptic signal transportation processes. Furthermore, we found that many lncRNAs associated with the neurodegenerative Alzheimer and Parkinson diseases were co-expressed in the fetal development of the human brain, and affected the convergent biological processes. In summary, our study provides a comprehensive map for lncRNA transcription dynamics in human brain development, which might shed light on the understanding of the molecular underpinnings of human brain function and disease.
(© The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
المشرفين على المادة: 0 (RNA, Long Noncoding)
تواريخ الأحداث: Date Created: 20170603 Date Completed: 20180117 Latest Revision: 20180225
رمز التحديث: 20221213
DOI: 10.1093/hmg/ddx203
PMID: 28575308
قاعدة البيانات: MEDLINE
الوصف
تدمد:1460-2083
DOI:10.1093/hmg/ddx203