دورية أكاديمية

Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea).

التفاصيل البيبلوغرافية
العنوان: Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea).
المؤلفون: von Dohlen CD; Department of Biology, Utah State University, LoganUT, United States., Spaulding U; Department of Biology, Utah State University, LoganUT, United States., Patch KB; Department of Biology, Utah State University, LoganUT, United States., Weglarz KM; Department of Biology, Utah State University, LoganUT, United States., Foottit RG; Agriculture and Agri-Food Canada, OttawaON, Canada., Havill NP; United States Forest Service, Northern Research Station, HamdenCT, United States., Burke GR; Department of Entomology, University of Georgia, AthensGA, United States.
المصدر: Frontiers in microbiology [Front Microbiol] 2017 Jun 13; Vol. 8, pp. 1037. Date of Electronic Publication: 2017 Jun 13 (Print Publication: 2017).
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Frontiers Research Foundation Country of Publication: Switzerland NLM ID: 101548977 Publication Model: eCollection Cited Medium: Print ISSN: 1664-302X (Print) Linking ISSN: 1664302X NLM ISO Abbreviation: Front Microbiol Subsets: PubMed not MEDLINE
أسماء مطبوعة: Original Publication: Lausanne : Frontiers Research Foundation
مستخلص: Sap-sucking insects typically engage in obligate relationships with symbiotic bacteria that play nutritional roles in synthesizing nutrients unavailable or in scarce supply from the plant-sap diets of their hosts. Adelgids are sap-sucking insects with complex life cycles that involve alternation between conifer tree species. While all adelgid species feed on spruce during the sexual phase of their life cycle, each adelgid species belongs to a major lineage that feeds on a distinct genus of conifers as their alternate host. Previous work on adelgid symbionts had discovered pairs of symbionts within each host species, and unusual diversity across the insect family, but left several open questions regarding the status of bacterial associates. Here, we explored the consistency of symbionts within and across adelgid lineages, and sought evidence for facultative vs. obligate symbiont status. Representative species were surveyed for symbionts using 16 S ribosomal DNA gene sequencing, confirming that different symbiont pairs were consistently present within each major adelgid lineage. Several approaches were used to establish whether symbionts exhibited characteristics of long-term, obligate mutualists. Patterns of symbiont presence across adelgid species and diversification with host insects suggested obligate relationships. Fluorescent in situ hybridization and electron microscopy localized symbionts to bacteriocyte cells within the bacteriome of each species (with one previously known exception), and detection of symbionts in eggs indicated their vertical transmission. Common characteristics of long-term obligate symbionts, such as nucleotide compositional bias and pleomorphic symbiont cell shape were also observed. Superimposing microbial symbionts on the adelgid phylogeny revealed a dynamic pattern of symbiont gains and losses over a relatively short period of time compared to other symbionts associated with sap-sucking insects, with each adelgid species possessing an older, "senior" symbiont and a younger "junior" symbiont. A hypothesis relating adelgid life cycles to relaxed constraints on symbionts is proposed, with the degradation of senior symbionts and repeated acquisition of more junior symbionts creating opportunities for repeated colonization of new alternate-conifer hosts by adelgids.
References: Appl Environ Microbiol. 2000 Jul;66(7):2898-905. (PMID: 10877784)
Curr Microbiol. 2000 Oct;41(4):300-4. (PMID: 10977900)
Nature. 2000 Sep 7;407(6800):81-6. (PMID: 10993077)
J Exp Biol. 2001 Jan;204(Pt 2):349-58. (PMID: 11136620)
Insect Mol Biol. 2001 Feb;10(1):57-67. (PMID: 11240637)
Bioinformatics. 2001 Aug;17(8):754-5. (PMID: 11524383)
Appl Environ Microbiol. 2002 Jul;68(7):3190-7. (PMID: 12088994)
Nat Rev Genet. 2002 Nov;3(11):850-61. (PMID: 12415315)
Environ Microbiol. 2003 Feb;5(2):116-26. (PMID: 12558594)
Mol Biol Evol. 1998 Nov;15(11):1506-13. (PMID: 12572614)
Proc Natl Acad Sci U S A. 2003 Nov 25;100 Suppl 2:14543-8. (PMID: 14527994)
Syst Biol. 2003 Oct;52(5):696-704. (PMID: 14530136)
Appl Environ Microbiol. 2004 Jun;70(6):3401-6. (PMID: 15184137)
Appl Environ Microbiol. 2005 Dec;71(12):8802-10. (PMID: 16332876)
Plant Physiol. 1966 Apr;41(4):573-8. (PMID: 16656290)
PLoS Biol. 2006 Jun;4(6):e188. (PMID: 16729848)
Science. 2006 Oct 13;314(5797):267. (PMID: 17038615)
Mol Ecol. 2006 Nov;15(13):4175-91. (PMID: 17054511)
Annu Rev Entomol. 2007;52:325-49. (PMID: 17163799)
Mol Phylogenet Evol. 2007 Jul;44(1):357-70. (PMID: 17196838)
Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19392-7. (PMID: 18048332)
Plant Physiol. 2008 Mar;146(3):859-66. (PMID: 18316641)
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83. (PMID: 19001264)
Proc Biol Sci. 2009 Mar 7;276(1658):987-91. (PMID: 19129128)
J Bacteriol. 1991 Oct;173(20):6321-4. (PMID: 1917864)
Appl Environ Microbiol. 2009 Aug;75(16):5328-35. (PMID: 19542349)
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15394-9. (PMID: 19706397)
Environ Microbiol. 2009 Dec;11(12):3265-79. (PMID: 19758348)
Genome Biol Evol. 2010;2:708-18. (PMID: 20829280)
BMC Evol Biol. 2010 Sep 28;10:295. (PMID: 20920188)
Mol Ecol Resour. 2009 May;9 Suppl s1:188-95. (PMID: 21564978)
ISME J. 2012 Feb;6(2):384-96. (PMID: 21833037)
Curr Biol. 2011 Aug 23;21(16):1366-72. (PMID: 21835622)
Nat Rev Microbiol. 2011 Nov 08;10(1):13-26. (PMID: 22064560)
PLoS Genet. 2011 Nov;7(11):e1002357. (PMID: 22102823)
Appl Environ Microbiol. 2012 Feb;78(4):1187-97. (PMID: 22156418)
Environ Microbiol. 2012 May;14(5):1284-95. (PMID: 22364314)
BMC Evol Biol. 2012 Jun 14;12:87. (PMID: 22697166)
Mol Biol Evol. 2012 Dec;29(12):3781-92. (PMID: 22821013)
J Evol Biol. 2012 Nov;25(11):2357-68. (PMID: 22994649)
J Bacteriol. 2012 Dec;194(23):6678-9. (PMID: 23144417)
Environ Microbiol. 2013 Jul;15(7):2031-42. (PMID: 23452253)
Environ Microbiol. 2013 Jul;15(7):2043-62. (PMID: 23452267)
Genome Biol Evol. 2013;5(9):1675-88. (PMID: 23918810)
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16663-8. (PMID: 24067657)
Arthropod Struct Dev. 2013 Nov;42(6):531-538. (PMID: 24100000)
Appl Environ Microbiol. 2014 Feb;80(3):878-85. (PMID: 24271164)
MBio. 2014 Sep 30;5(5):e01697-14. (PMID: 25271287)
Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76. (PMID: 25713367)
Evolution. 2015 Jun;69(6):1423-1432. (PMID: 25787153)
BMC Genomics. 2015 Mar 21;16:226. (PMID: 25887812)
Zookeys. 2015 Nov 11;(534):35-54. (PMID: 26668546)
Mol Ecol. 2016 May;25(9):2065-80. (PMID: 26880353)
Sci Rep. 2016 Mar 22;6:23487. (PMID: 27000526)
Environ Microbiol. 2016 Sep;18(8):2591-603. (PMID: 27114069)
Genome Biol Evol. 2016 May 22;8(5):1440-58. (PMID: 27190007)
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):E5416-24. (PMID: 27573819)
Am Nat. 2000 Oct;156(4):425-441. (PMID: 29592135)
Int J Syst Bacteriol. 1995 Jan;45(1):186-7. (PMID: 7857801)
Annu Rev Microbiol. 1995;49:55-94. (PMID: 8561471)
Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2873-8. (PMID: 8610134)
J Mol Evol. 1999 Jan;48(1):49-58. (PMID: 9873076)
فهرسة مساهمة: Keywords: bacterial symbionts; complex life cycles; dual symbionts; host alternation; insects; symbiont replacements
تواريخ الأحداث: Date Created: 20170630 Latest Revision: 20200930
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC5468457
DOI: 10.3389/fmicb.2017.01037
PMID: 28659877
قاعدة البيانات: MEDLINE
الوصف
تدمد:1664-302X
DOI:10.3389/fmicb.2017.01037