دورية أكاديمية

Fluorescent nucleobase analogues for base-base FRET in nucleic acids: synthesis, photophysics and applications.

التفاصيل البيبلوغرافية
العنوان: Fluorescent nucleobase analogues for base-base FRET in nucleic acids: synthesis, photophysics and applications.
المؤلفون: Bood M; Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden., Sarangamath S; Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden., Wranne MS; Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden., Grøtli M; Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden., Wilhelmsson LM; Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
المصدر: Beilstein journal of organic chemistry [Beilstein J Org Chem] 2018 Jan 10; Vol. 14, pp. 114-129. Date of Electronic Publication: 2018 Jan 10 (Print Publication: 2018).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Beilstein-Institut Country of Publication: Germany NLM ID: 101250746 Publication Model: eCollection Cited Medium: Print ISSN: 1860-5397 (Print) Linking ISSN: 18605397 NLM ISO Abbreviation: Beilstein J Org Chem Subsets: PubMed not MEDLINE
أسماء مطبوعة: Publication: [Frankfurt, Germany] : Beilstein-Institut
Original Publication: [Frankfurt, Germany] : [London] : Beilstein-Institut ; in cooperation with BioMed Central, [2005]-
مستخلص: Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base-base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and enable detailed investigations of structure and dynamics of nucleic acid containing systems. The first base-base FRET pair, tC O -tC nitro , has recently been complemented with among others the adenine analogue FRET pair, qAN1-qA nitro , increasing the flexibility of the methodology. Here we present the design, synthesis, photophysical characterization and use of such base analogues. They enable a higher control of the FRET orientation factor, κ 2 , have a different distance window of opportunity than external fluorophores, and, thus, have the potential to facilitate better structure resolution. Netropsin DNA binding and the B-to-Z-DNA transition are examples of structure investigations that recently have been performed using base-base FRET and that are described here. Base-base FRET has been around for less than a decade, only in 2017 expanded beyond one FRET pair, and represents a highly promising structure and dynamics methodology for the field of nucleic acids. Here we bring up its advantages as well as disadvantages and touch upon potential future applications.
References: Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11176-81. (PMID: 18676615)
Nature. 1979 Dec 13;282(5740):680-6. (PMID: 514347)
J Am Chem Soc. 2008 Sep 24;130(38):12574-5. (PMID: 18761442)
Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11660-4. (PMID: 7526401)
Q Rev Biophys. 2010 May;43(2):159-83. (PMID: 20478079)
Nucleic Acids Res. 2010 Nov;38(20):7122-32. (PMID: 20624816)
Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16510-5. (PMID: 23012404)
Nucleic Acids Res. 2005 Feb 17;33(3):1031-9. (PMID: 15718302)
J Am Chem Soc. 2017 Jul 12;139(27):9271-9280. (PMID: 28613885)
Nucleic Acids Res. 2014 Apr;42(6):3638-47. (PMID: 24445803)
Nucleic Acids Res. 2004 Sep 27;32(17):5087-95. (PMID: 15452275)
Nat Methods. 2015 Aug;12(8):773-9. (PMID: 26147918)
Sci Rep. 2017 May 24;7(1):2393. (PMID: 28539582)
Nucleic Acids Res. 2013 Jan 7;41(1):e18. (PMID: 22977181)
Nat Rev Genet. 2003 Jul;4(7):566-72. (PMID: 12838348)
J Phys Chem B. 2010 Jan 21;114(2):1050-6. (PMID: 20039634)
Biochemistry. 1989 Jan 24;28(2):720-5. (PMID: 2713340)
J Phys Chem B. 2017 Sep 7;121(35):8211-8241. (PMID: 28709377)
J Am Chem Soc. 2009 Apr 1;131(12):4288-93. (PMID: 19317504)
Biochemistry. 2007 Jan 16;46(2):331-40. (PMID: 17209543)
Chem Commun (Camb). 2016 Mar 7;52(19):3809-12. (PMID: 26865112)
Curr Opin Struct Biol. 2015 Oct;34:52-9. (PMID: 26295172)
J Am Chem Soc. 2005 Jul 20;127(28):10002-3. (PMID: 16011355)
Nat Protoc. 2007;2(3):615-23. (PMID: 17406622)
Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18337-42. (PMID: 19020079)
Chem Soc Rev. 2009 Aug;38(8):2410-33. (PMID: 19623358)
Curr Opin Struct Biol. 2016 Oct;40:163-185. (PMID: 27939973)
J Am Chem Soc. 2001 Mar 14;123(10):2434-5. (PMID: 11456897)
Cell. 2001 Aug 10;106(3):309-18. (PMID: 11509180)
Nucleic Acids Res. 2016 Jun 20;44(11):e101. (PMID: 26896804)
J Am Chem Soc. 2011 Sep 28;133(38):14912-5. (PMID: 21866967)
Nucleic Acids Res. 2008 Jan;36(1):157-67. (PMID: 18003656)
Chemistry. 2015 Mar 2;21(10):4039-48. (PMID: 25641628)
J Mol Biol. 1993 May 20;231(2):475-88. (PMID: 8510158)
Chem Rev. 2010 May 12;110(5):2579-619. (PMID: 20205430)
Biochemistry. 1994 Feb 15;33(6):1385-91. (PMID: 8312256)
J Am Chem Soc. 2002 Nov 6;124(44):13231-41. (PMID: 12405852)
J Am Chem Soc. 2015 Jan 21;137(2):699-707. (PMID: 25423623)
Nucleic Acids Res. 2005 Sep 07;33(16):5019-25. (PMID: 16147985)
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):E2296-305. (PMID: 27035942)
Bioorg Med Chem Lett. 2013 Feb 1;23(3):886-92. (PMID: 23273411)
Nat Methods. 2012 Dec;9(12):1218-25. (PMID: 23142871)
Annu Rev Biophys. 2008;37:445-64. (PMID: 18573090)
J Org Chem. 1974 Dec 13;39(25):3668-71. (PMID: 4464329)
J Am Chem Soc. 2013 Jan 16;135(2):741-50. (PMID: 23240980)
Chemistry. 2017 Jun 1;23 (31):7607-7613. (PMID: 28411372)
Biochemistry. 2008 Jul 29;47(30):7857-62. (PMID: 18597488)
Chemistry. 2014 Feb 10;20(7):2010-5. (PMID: 24311229)
Eur Biophys J. 2010 Apr;39(5):781-7. (PMID: 19859703)
Sci Rep. 2015 Jul 31;5:12653. (PMID: 26227585)
Nucleic Acids Res. 2011 Aug;39(15):6825-34. (PMID: 21551219)
J Mol Biol. 1972 Jun 28;67(3):375-96. (PMID: 5045303)
J Mol Biol. 1995 Mar 31;247(3):486-500. (PMID: 7536250)
Proc Natl Acad Sci U S A. 1985 Mar;82(5):1376-80. (PMID: 2983343)
Chemistry. 2012 May 7;18(19):5987-97. (PMID: 22437923)
Phys Chem Chem Phys. 2010 Aug 21;12(31):8881-92. (PMID: 20532361)
Biophys J. 1997 Dec;73(6):3277-86. (PMID: 9414238)
Chembiochem. 2012 Sep 24;13(14):1990-2001. (PMID: 22936620)
J Mol Biol. 1983 Jun 15;167(1):211-6. (PMID: 6306251)
Biochemistry. 2000 May 30;39(21):6317-24. (PMID: 10828944)
J Biol Chem. 1969 Mar 10;244(5):1228-37. (PMID: 5767305)
Chembiochem. 2013 Feb 11;14(3):323-31. (PMID: 23355266)
فهرسة مساهمة: Keywords: B-to-Z-DNA transition; FRET; Z-DNA; fluorescent base analogues; netropsin; nucleic acid structure and dynamics; quadracyclic adenines; tricyclic cytosines
تواريخ الأحداث: Date Created: 20180215 Latest Revision: 20201001
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC5789401
DOI: 10.3762/bjoc.14.7
PMID: 29441135
قاعدة البيانات: MEDLINE
الوصف
تدمد:1860-5397
DOI:10.3762/bjoc.14.7