دورية أكاديمية

Automated analysis of cell migration and nuclear envelope rupture in confined environments.

التفاصيل البيبلوغرافية
العنوان: Automated analysis of cell migration and nuclear envelope rupture in confined environments.
المؤلفون: Elacqua JJ; Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America., McGregor AL; Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America., Lammerding J; Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States of America.
المصدر: PloS one [PLoS One] 2018 Apr 12; Vol. 13 (4), pp. e0195664. Date of Electronic Publication: 2018 Apr 12 (Print Publication: 2018).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: Cell Movement* , Lab-On-A-Chip Devices*, Nuclear Envelope/*metabolism, Automation ; Image Processing, Computer-Assisted
مستخلص: Recent in vitro and in vivo studies have highlighted the importance of the cell nucleus in governing migration through confined environments. Microfluidic devices that mimic the narrow interstitial spaces of tissues have emerged as important tools to study cellular dynamics during confined migration, including the consequences of nuclear deformation and nuclear envelope rupture. However, while image acquisition can be automated on motorized microscopes, the analysis of the corresponding time-lapse sequences for nuclear transit through the pores and events such as nuclear envelope rupture currently requires manual analysis. In addition to being highly time-consuming, such manual analysis is susceptible to person-to-person variability. Studies that compare large numbers of cell types and conditions therefore require automated image analysis to achieve sufficiently high throughput. Here, we present an automated image analysis program to register microfluidic constrictions and perform image segmentation to detect individual cell nuclei. The MATLAB program tracks nuclear migration over time and records constriction-transit events, transit times, transit success rates, and nuclear envelope rupture. Such automation reduces the time required to analyze migration experiments from weeks to hours, and removes the variability that arises from different human analysts. Comparison with manual analysis confirmed that both constriction transit and nuclear envelope rupture were detected correctly and reliably, and the automated analysis results closely matched a manual analysis gold standard. Applying the program to specific biological examples, we demonstrate its ability to detect differences in nuclear transit time between cells with different levels of the nuclear envelope proteins lamin A/C, which govern nuclear deformability, and to detect an increase in nuclear envelope rupture duration in cells in which CHMP7, a protein involved in nuclear envelope repair, had been depleted. The program thus presents a versatile tool for the study of confined migration and its effect on the cell nucleus.
References: Integr Biol (Camb). 2015 Dec;7(12):1534-46. (PMID: 26549481)
Science. 2011 Mar 25;331(6024):1559-64. (PMID: 21436443)
Sci Rep. 2016 Jul 27;6:30325. (PMID: 27461848)
Nat Commun. 2017 Jul 24;8:16013. (PMID: 28737169)
Biophys J. 2015 Sep 1;109 (5):900-13. (PMID: 26331248)
Nature. 1980 Jan 10;283(5743):139-46. (PMID: 6985715)
Cell Adh Migr. 2015;9(5):357-66. (PMID: 26301444)
Curr Opin Cell Biol. 2016 Jun;40:32-40. (PMID: 26895141)
J Cell Biol. 2013 Jun 24;201(7):1069-84. (PMID: 23798731)
Mol Biol Cell. 2017 Jul 7;28(14 ):1984-1996. (PMID: 28057760)
J Biol Chem. 2006 Sep 1;281(35):25768-80. (PMID: 16825190)
Nucleus. 2017 May 4;8(3):268-274. (PMID: 28287898)
J Cell Biol. 2015 Aug 17;210(4):583-94. (PMID: 26261182)
Hum Mol Genet. 2013 Jun 15;22(12):2335-49. (PMID: 23427149)
Cell. 2016 Dec 1;167(6):1571-1585.e18. (PMID: 27839864)
Cell Mol Biol Lett. 2013 Dec;18(4):595-611. (PMID: 24293108)
Cell Mol Bioeng. 2014 Sep 1;7(3):293-306. (PMID: 25436017)
Cell Mol Bioeng. 2016 Jun;9(2):258-267. (PMID: 27570565)
Lab Chip. 2012 Oct 7;12(19):3774-8. (PMID: 22864314)
J Cell Biol. 2014 Mar 3;204(5):669-82. (PMID: 24567359)
Chin J Cancer. 2011 Jun;30(6):415-25. (PMID: 21627864)
Cancer Med. 2015 Oct;4(10):1547-57. (PMID: 26175118)
Trends Cell Biol. 2017 Aug;27(8):546-555. (PMID: 28285738)
Mol Biol Cell. 2017 Jun 1;28(11):1467-1488. (PMID: 28381423)
Science. 2016 Apr 15;352(6283):353-8. (PMID: 27013428)
J Biol Chem. 2013 Mar 22;288(12):8610-8. (PMID: 23355469)
Microelectron Eng. 2015 Aug 16;144:42-45. (PMID: 26412914)
Mol Biol Cell. 2016 Nov 1;27(21):3210-3213. (PMID: 27799497)
Eur J Cell Biol. 2016 Nov;95(11):449-464. (PMID: 27397692)
Curr Opin Cell Biol. 2011 Feb;23(1):55-64. (PMID: 21109415)
Science. 2016 Apr 15;352(6283):359-62. (PMID: 27013426)
معلومات مُعتمدة: R01 HL082792 United States HL NHLBI NIH HHS; U54 CA210184 United States CA NCI NIH HHS
تواريخ الأحداث: Date Created: 20180413 Date Completed: 20180718 Latest Revision: 20181114
رمز التحديث: 20221213
مُعرف محوري في PubMed: PMC5896979
DOI: 10.1371/journal.pone.0195664
PMID: 29649271
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0195664