دورية أكاديمية

Development of endocytosis, degradative activity, and antigen processing capacity during GM-CSF driven differentiation of murine bone marrow.

التفاصيل البيبلوغرافية
العنوان: Development of endocytosis, degradative activity, and antigen processing capacity during GM-CSF driven differentiation of murine bone marrow.
المؤلفون: Olatunde AC; Department of Biological Sciences, Auburn University, Auburn, Alabama., Abell LP; Department of Biological Sciences, Auburn University, Auburn, Alabama., Landuyt AE; Department of Biological Sciences, Auburn University, Auburn, Alabama., Hiltbold Schwartz E; Department of Biological Sciences, Auburn University, Auburn, Alabama.
المصدر: PloS one [PLoS One] 2018 May 10; Vol. 13 (5), pp. e0196591. Date of Electronic Publication: 2018 May 10 (Print Publication: 2018).
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: Antigen Presentation/*immunology , Bone Marrow/*immunology , Cell Differentiation/*immunology , Dendritic Cells/*immunology , Endocytosis/*immunology , Granulocyte-Macrophage Colony-Stimulating Factor/*immunology, Animals ; CD11c Antigen/immunology ; Cells, Cultured ; Lymphocyte Activation/immunology ; Macrophages/immunology ; Mice ; Mice, Inbred C57BL ; Monocytes/immunology ; Myeloid Cells/immunology ; T-Lymphocytes/immunology
مستخلص: Dendritic cells (DC) are sentinels of the immune system, alerting and enlisting T cells to clear pathogenic threats. As such, numerous studies have demonstrated their effective uptake and proteolytic activities coupled with antigen processing and presentation functions. Yet, less is known about how these cellular mechanisms change and develop as myeloid cells progress from progenitor cells to more differentiated cell types such as DC. Thus, our study comparatively examined these functions at different stages of myeloid cell development driven by the GM-CSF. To measure these activities at different stages of development, GM-CSF driven bone marrow cells were sorted based on expression of Ly6C, CD115, and CD11c. This strategy enables isolation of cells representing five distinct myeloid cell types: Common Myeloid Progenitor (CMP), Granulocyte/Macrophage Progenitor (GMP), monocytes, monocyte-derived Macrophage/monocyte-derived Dendritic cell Precursors (moMac/moDP), and monocyte-derived DC (moDC). We observed significant differences in the uptake capacity, proteolysis, and antigen processing and presentation functions between these myeloid cell populations. CMP showed minimal uptake capacity with no detectable antigen processing and presenting function. The GMP population showed higher uptake capacity, modest proteolytic activity, and little T cell stimulatory function. In the monocyte population, the uptake capacity reached its peak, yet this cell type had minimal antigen processing and presentation function. Finally, moMac/moDP and moDC had a modestly decreased uptake capacity, high degradative capacity and strong antigen processing and presentation functions. These insights into when antigen processing and presentation function develop in myeloid cells during GM-CSF driven differentiation are crucial to the development of vaccines, allowing targeting of the most qualified cells as an ideal vaccine vehicles.
References: PLoS One. 2017 Jul 27;12 (7):e0181985. (PMID: 28750033)
J Immunol. 2013 Jun 1;190(11):5640-8. (PMID: 23610144)
Cell. 2001 Aug 10;106(3):255-8. (PMID: 11509172)
J Immunol. 2010 Sep 15;185(6):3426-35. (PMID: 20729332)
Nat Immunol. 2008 Jun;9(6):676-83. (PMID: 18469816)
J Immunol. 2010 Jun 15;184(12):7071-81. (PMID: 20483752)
J Immunol. 2005 Jun 1;174(11):6592-7. (PMID: 15905497)
Adv Immunol. 2012;113:119-34. (PMID: 22244581)
Immunity. 2009 Sep 18;31(3):513-25. (PMID: 19733489)
Science. 2005 Mar 11;307(5715):1630-4. (PMID: 15761154)
Annu Rev Immunol. 2013;31:563-604. (PMID: 23516985)
Nat Immunol. 2006 Jun;7(6):663-71. (PMID: 16680143)
Sci Rep. 2016 Mar 16;6:23115. (PMID: 26979287)
Science. 2007 Jan 5;315 (5808):107-11. (PMID: 17204652)
Cell Microbiol. 2007 Jun;9(6):1397-411. (PMID: 17250592)
J Exp Med. 1996 Aug 1;184(2):695-706. (PMID: 8760823)
Nature. 2000 Mar 9;404(6774):193-7. (PMID: 10724173)
J Exp Med. 2003 Jul 21;198(2):305-13. (PMID: 12874263)
Immunity. 2015 Dec 15;43(6):1087-100. (PMID: 26682983)
Mol Biol Cell. 2014 Nov 1;25(21):3330-41. (PMID: 25165138)
J Cell Physiol. 2013 Jul;228(7):1464-72. (PMID: 23255209)
Immunity. 2015 Jun 16;42(6):1197-211. (PMID: 26084029)
Science. 2003 Feb 28;299(5611):1400-3. (PMID: 12610307)
Mol Cells. 2016 Oct;39(10 ):734-741. (PMID: 27788572)
Cell Death Differ. 2016 Jun;23 (6):997-1003. (PMID: 26990659)
Infect Immun. 2010 Jul;78(7):2956-65. (PMID: 20404078)
J Exp Med. 1994 Apr 1;179(4):1109-18. (PMID: 8145033)
Annu Rev Immunol. 2008;26:293-316. (PMID: 18045026)
Blood. 2006 Jun 15;107(12):4930-7. (PMID: 16497970)
Immunity. 2007 Apr;26(4):519-31. (PMID: 17412618)
Nat Immunol. 2007 Nov;8(11):1207-16. (PMID: 17922016)
Immunity. 2014 May 15;40(5):642-56. (PMID: 24837101)
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4287-92. (PMID: 20142498)
J Immunol. 2015 Jul 1;195(1):134-44. (PMID: 26019271)
Nat Immunol. 2006 Oct;7(10):1029-35. (PMID: 16985500)
J Neurosci. 2016 Apr 13;36(15):4182-95. (PMID: 27076418)
Inflamm Res. 2012 Feb;61(2):113-26. (PMID: 22116297)
J Immunol. 2000 Mar 15;164(6):2978-86. (PMID: 10706685)
Exp Cell Res. 2007 Apr 15;313(7):1438-48. (PMID: 17362929)
Immunol Rev. 2016 Sep;273(1):156-79. (PMID: 27558334)
J Exp Med. 1982 Apr 1;155(4):1172-87. (PMID: 6460832)
J Immunol. 2011 Aug 1;187(3):1157-65. (PMID: 21709158)
Immunity. 2013 May 23;38(5):1038-49. (PMID: 23684988)
Immunity. 2009 Sep 18;31(3):502-12. (PMID: 19733097)
Blood. 2012 Apr 12;119(15):3383-93. (PMID: 22323450)
PLoS One. 2012;7(8):e42656. (PMID: 22880072)
Science. 2004 Aug 20;305(5687):1153-7. (PMID: 15326355)
Nat Rev Immunol. 2007 Jan;7(1):19-30. (PMID: 17170756)
J Immunol. 2007 Dec 1;179(11):7577-84. (PMID: 18025203)
Cell. 2000 Aug 4;102(3):325-34. (PMID: 10975523)
Nat Rev Immunol. 2015 Apr;15(4):203-16. (PMID: 25720354)
J Immunol. 2008 Aug 1;181(3):2220-6. (PMID: 18641362)
Cell. 2006 Jul 14;126(1):205-18. (PMID: 16839887)
J Exp Med. 2003 Jul 21;198(2):293-303. (PMID: 12874262)
Immunity. 2009 Apr 17;30(4):544-55. (PMID: 19328020)
Blood. 2008 Aug 15;112(4):935-45. (PMID: 18684880)
J Exp Med. 1992 Dec 1;176(6):1693-702. (PMID: 1460426)
Cell Microbiol. 2009 Aug;11(8):1160-9. (PMID: 19388903)
Nat Immunol. 2007 Nov;8(11):1217-26. (PMID: 17922015)
J Exp Med. 1995 Aug 1;182(2):389-400. (PMID: 7629501)
Immunol Rev. 2007 Oct;219:143-56. (PMID: 17850487)
معلومات مُعتمدة: R15 AI107773 United States AI NIAID NIH HHS; R15 AI107773 United States NH NIH HHS
المشرفين على المادة: 0 (CD11c Antigen)
83869-56-1 (Granulocyte-Macrophage Colony-Stimulating Factor)
تواريخ الأحداث: Date Created: 20180511 Date Completed: 20180801 Latest Revision: 20201214
رمز التحديث: 20240628
مُعرف محوري في PubMed: PMC5944997
DOI: 10.1371/journal.pone.0196591
PMID: 29746488
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0196591