دورية أكاديمية

Large-effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer.

التفاصيل البيبلوغرافية
العنوان: Large-effect loci affect survival in Tasmanian devils (Sarcophilus harrisii) infected with a transmissible cancer.
المؤلفون: Margres MJ; School of Biological Sciences, Washington State University, Pullman, Washington., Jones ME; School of Zoology, University of Tasmania, Hobart, Tasmania, Australia., Epstein B; School of Biological Sciences, Washington State University, Pullman, Washington., Kerlin DH; School of Environment, Griffith University, Nathan, Queensland, Australia., Comte S; School of Zoology, University of Tasmania, Hobart, Tasmania, Australia., Fox S; Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia., Fraik AK; School of Biological Sciences, Washington State University, Pullman, Washington., Hendricks SA; Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho., Huxtable S; Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia., Lachish S; Department of Zoology, University of Oxford, Oxford, UK., Lazenby B; Save the Tasmanian Devil Program, Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia., O'Rourke SM; Department of Animal Science, University of California, Davis, Davis, California., Stahlke AR; Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho., Wiench CG; Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho., Hamede R; School of Zoology, University of Tasmania, Hobart, Tasmania, Australia.; Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria, Australia., Schönfeld B; School of Zoology, University of Tasmania, Hobart, Tasmania, Australia., McCallum H; School of Environment, Griffith University, Nathan, Queensland, Australia., Miller MR; Department of Animal Science, University of California, Davis, Davis, California., Hohenlohe PA; Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho., Storfer A; School of Biological Sciences, Washington State University, Pullman, Washington.
المصدر: Molecular ecology [Mol Ecol] 2018 Nov; Vol. 27 (21), pp. 4189-4199. Date of Electronic Publication: 2018 Oct 05.
نوع المنشور: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
اللغة: English
بيانات الدورية: Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
مواضيع طبية MeSH: Disease Resistance/*genetics , Marsupialia/*genetics , Neoplasms/*veterinary, Animals ; Conservation of Natural Resources ; Endangered Species ; Female ; Genetic Association Studies/veterinary ; Genomics ; Male ; Phenotype ; Polymorphism, Single Nucleotide ; Sex Factors ; Survival Rate ; Tasmania
مستخلص: Identifying the genetic architecture of complex phenotypes is a central goal of modern biology, particularly for disease-related traits. Genome-wide association methods are a classical approach for identifying the genomic basis of variation in disease phenotypes, but such analyses are particularly challenging in natural populations due to sample size difficulties. Extensive mark-recapture data, strong linkage disequilibrium and a lethal transmissible cancer make the Tasmanian devil (Sarcophilus harrisii) an ideal model for such an association study. We used a RAD-capture approach to genotype 624 devils at ~16,000 loci and then used association analyses to assess the heritability of three cancer-related phenotypes: infection case-control (where cases were infected devils and controls were devils that were never infected), age of first infection and survival following infection. The SNP array explained much of the phenotypic variance for female survival (>80%) and female case-control (>61%). We found that a few large-effect SNPs explained much of the variance for female survival (~5 SNPs explained >61% of the total variance), whereas more SNPs (~56) of smaller effect explained less of the variance for female case-control (~23% of the total variance). By contrast, these same SNPs did not account for a significant proportion of phenotypic variance in males, suggesting that the genetic bases of these traits and/or selection differ across sexes. Loci involved with cell adhesion and cell-cycle regulation underlay trait variation, suggesting that the devil immune system is rapidly evolving to recognize and potentially suppress cancer growth through these pathways. Overall, our study provided necessary data for genomics-based conservation and management in Tasmanian devils.
(© 2018 John Wiley & Sons Ltd.)
References: Biometrics. 1999 Dec;55(4):997-1004. (PMID: 11315092)
Nat Genet. 2005 Apr;37(4):441-4. (PMID: 15778707)
Science. 2005 Mar 25;307(5717):1928-33. (PMID: 15790847)
BMC Genet. 2005 Dec 30;6 Suppl 1:S109. (PMID: 16451565)
Nature. 2006 Feb 2;439(7076):549. (PMID: 16452970)
Cell. 2006 Aug 11;126(3):477-87. (PMID: 16901782)
PLoS Genet. 2006 Dec;2(12):e190. (PMID: 17194218)
Nat Genet. 2007 Dec;39(12):1443-52. (PMID: 17952075)
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):10023-7. (PMID: 18626026)
Trends Ecol Evol. 2008 Nov;23(11):631-7. (PMID: 18715674)
Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19910-4. (PMID: 19066216)
PLoS Genet. 2009 Feb;5(2):e1000337. (PMID: 19197355)
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7. (PMID: 19474294)
PLoS Genet. 2009 Jun;5(6):e1000529. (PMID: 19543373)
Nature. 2009 Oct 8;461(7265):747-53. (PMID: 19812666)
Bioinformatics. 2010 Mar 15;26(6):841-2. (PMID: 20110278)
Ecology. 2009 Dec;90(12):3379-92. (PMID: 20120807)
Science. 2010 Jul 2;329(5987):72-5. (PMID: 20466884)
Nat Rev Genet. 2010 Jun;11(6):446-50. (PMID: 20479774)
Nat Genet. 2010 Jul;42(7):570-5. (PMID: 20562874)
Nat Genet. 2010 Jul;42(7):565-9. (PMID: 20562875)
Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12348-53. (PMID: 21709235)
Nat Rev Genet. 2012 Jan 18;13(2):135-45. (PMID: 22251874)
Cell. 2012 Feb 17;148(4):780-91. (PMID: 22341448)
Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
Nat Genet. 2012 Mar 18;44(4):369-75, S1-3. (PMID: 22426310)
Genet Epidemiol. 2012 Jul;36(5):430-7. (PMID: 22570057)
Nat Genet. 2012 Jun 17;44(7):821-4. (PMID: 22706312)
J Anim Ecol. 2013 Jan;82(1):182-90. (PMID: 22943286)
PLoS Genet. 2013;9(2):e1003264. (PMID: 23408905)
Nat Genet. 2013 Apr;45(4):400-5, 405e1-3. (PMID: 23455638)
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5103-8. (PMID: 23479617)
Science. 2013 Mar 15;339(6125):1312-6. (PMID: 23493712)
PLoS Genet. 2013 Apr;9(4):e1003449. (PMID: 23637621)
Am J Hum Genet. 2013 May 2;92(5):643-7. (PMID: 23643377)
Mol Ecol. 2013 Jun;22(11):3124-40. (PMID: 23701397)
Heredity (Edinb). 2014 Jan;112(1):79-88. (PMID: 23759726)
Nat Rev Genet. 2013 Nov;14(11):807-20. (PMID: 24136507)
Bioinformatics. 2014 May 15;30(10):1486-7. (PMID: 24458950)
Nat Genet. 2014 Jul;46(7):736-41. (PMID: 24880342)
Nat Genet. 2014 Nov;46(11):1173-86. (PMID: 25282103)
Biol Lett. 2014 Nov;10(11):20140619. (PMID: 25376800)
BMC Bioinformatics. 2014 Nov 25;15:356. (PMID: 25420514)
PLoS Genet. 2015 May 01;11(5):e1005163. (PMID: 25933381)
Nat Genet. 2015 Oct;47(10):1114-20. (PMID: 26323059)
Proc Biol Sci. 2015 Sep 7;282(1814):null. (PMID: 26336167)
Proc Biol Sci. 2015 Dec 7;282(1820):20151301. (PMID: 26631557)
Mol Ecol Resour. 2016 May;16(3):727-41. (PMID: 26649993)
Mol Ecol. 2016 Jan;25(2):454-69. (PMID: 26671840)
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):374-9. (PMID: 26711993)
Genetics. 2016 Feb;202(2):389-400. (PMID: 26715661)
Trends Genet. 2016 Mar;32(3):155-164. (PMID: 26806794)
Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2029-38. (PMID: 27001848)
Nat Genet. 2016 Jun;48(6):634-9. (PMID: 27135400)
Nature. 2016 Jun 30;534(7609):705-9. (PMID: 27338791)
Nat Commun. 2016 Aug 30;7:12684. (PMID: 27575253)
Mol Ecol. 2017 Jun;26(12):3168-3185. (PMID: 28316116)
Sci Rep. 2017 Mar 24;7(1):423. (PMID: 28341828)
Ecol Lett. 2017 Jun;20(6):770-778. (PMID: 28489304)
J Evol Biol. 2017 Jul;30(7):1400-1408. (PMID: 28510293)
Sci Rep. 2017 Jul 24;7(1):6217. (PMID: 28740255)
Conserv Genet. 2017 Aug;18(4):977-982. (PMID: 28966567)
معلومات مُعتمدة: P30 GM103324 United States GM NIGMS NIH HHS; R01 GM126563 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: GWAS; adaptation; cancer; effect size; genotype-phenotype
تواريخ الأحداث: Date Created: 20180902 Date Completed: 20190701 Latest Revision: 20240213
رمز التحديث: 20240213
مُعرف محوري في PubMed: PMC6759049
DOI: 10.1111/mec.14853
PMID: 30171778
قاعدة البيانات: MEDLINE
الوصف
تدمد:1365-294X
DOI:10.1111/mec.14853